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Ternary half-Heusler materials with 18 valence electrons show semiconducting behavior and are studied intensively
because of their promising thermoelectric properties. Quaternary half-Heusler materials with four different atoms
and containing 18 valence electrons, similar to their ternary counterparts, are also promising due to their low thermal
conductivity. In this study, thermoelectric properties of ternary half-Heusler ScNiSb and the predicted quaternary
half-Heusler MgTiNi2Sb2 materials are investigated from first principles. Calculations are carried out using density
functional theory (DFT) within generalized gradient approximation (GGA). Equilibrium lattice parameters, bulk
modulus, pressure dependence of bulk modulus, electronic band structures, total and partial electronic density
of states, and vibrational properties are calculated and results are compared with available experiments and
other calculations. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, and electronic
thermal conductivity are calculated by considering various scattering mechanisms beyond constant relaxation time
approximation. Lattice thermal conductivities are calculated from phonon Boltzmann transport equation without
using any experimental parameters. We have found that, by replacing the Sc atoms of ScNiSb with Mg and Ti, the
obtained quaternary material MgTiNi2Sb2 exhibits improved p-type thermoelectric performance not only because of
its lower thermal conductivity but also due to its enhanced electronic transport properties. We predicted the highest
p-type ZT=1.25 value at 1000 K for MgTiNi2Sb2, which is about 2.5 times larger compared to ScNiSb. This study
elucidates the promising thermoelectric performance of quaternary half-Heusler materials.

1. Introduction

In parallel with the increasing energy production, the amount
of waste heat also increases. It has been predicted that
the waste heat produced in 2030 will constitute approximately
50% of the global energy production [1]. Among waste
heat recovery strategies, solid-state thermoelectric systems are
intensively studied because they offer clean, sustainable, and
environmentally friendly solution for heat-to-electricity conversion
[2, 3]. The thermoelectric devices can be applied to various heat
emanating systems such as sun [4] and radioisotopes [5, 6], and
heat recovery systems such as transport vehicles [7], industrial
systems [8, 9], and human body [10, 11]. Alternatively, the electric
current applied to a thermoelectric device can also work as a
solid-state heat pump which is called thermoelectric cooling [12,
13, 14]. Thermoelectric coolers are free of moving parts, silent,
and suitable for miniaturization [15]. Thermoelectric modules can
also be used in hybrid energy harvesting systems [16].

In order to obtain commercially efficient thermoelectric
generators, the performance of thermoelectric materials must be
improved by various design strategies [17, 18]. There is always
room for discovery of new classes of thermoelectric materials
either experimentally [19, 20, 21, 22] or computationally [23].

The efficiency of a thermoelectric material is given by a
dimensionless figure of merit ZT = S2σT/κ where S, σ, T ,
and κ represent the Seebeck coefficient, electrical conductivity,
absolute temperature, and thermal conductivity, respectively. Here,
κ is the sum of electronic (κe) and the lattice thermal (κl)
conductivities. For a high value of ZT , the material must exhibit
low thermal conductivity as well as high electrical conductivity

and high Seebeck coefficient. The commercial thermoelectric
materials mostly have ZT ≈ 1 but larger values of ZT are
required to improve efficiency for widely usage in many different
applications.

Half-Heusler compounds are promising thermoelectric
materials which are intensively studied due to their high thermal
stability, mechanically robustness, and excellent electrical
properties [24]. These materials, containing three different
elements (XYZ), are promising for high-temperature power
generation applications with exhibiting ZT ≈ 1 around 1000 K
[24, 25]. One lacking property of half-Heusler materials is their
relatively high lattice thermal conductivity [26] compared to well
known thermoelectric materials such as Bi2Te3 [27] and PbTe
[28]. Phonon engineering is very important in order to increase
the thermoelectric efficiency of half-Heusler materials.

Recently, a new form of half-Heusler compounds has attracted
attention so called quaternary or double half-Heuslers [29, 30, 31,
32, 33]. These materials are named as double half-Heuslers which
are based on aliovalent substitution of XYZ with X’X”Y2Z2,
X2Y’Y”Z2, or X2Y2Z’Z” (where the substituted elements are not
isovalent) to distinguish from other isovalently alloyed quaternary
Heusler compounds [29]. Quaternary half-Heusler materials are
found to exhibit lower lattice thermal conductivities compared to
the half-Heusler materials, both experimentally [29, 30, 32] and
computationally [29, 34]. Quaternary half-Heusler compounds are
promising candidates for thermoelectric applications where low
thermal conductivity is almost a must to achieve high figure of
merit (ZT ).

In this study, a comparative first-principles investigation
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of half-Heusler ScNiSb and its analogue quaternary double
half-Heusler (computationally predicted [29]) MgTiNi2Sb2

compound have been performed for their thermoelectric
properties. We have found that, replacing Sc atom with Mg and
Ti improves the electronic transport properties MgTiNi2Sb2.
Together with the lower lattice thermal conductivity, its highest
p-type ZT value is found as 1.25 at temperature 1000 K with a
carrier concentration 1021 cm−3.

2. Computational Details
Calculations have been carried out within Vienna Ab initio

Simulation Package (VASP) [35] which is based on density
functional theory [36, 37]. Generalized gradient approximation
(GGA) is used for describing the exchange and correlation
functionals with the parameterization of Perdew-Burke-Ernzerhof
(PBE) [38]. For plane waves an energy cutoff value of 500 eV
was found to be converged. The convergence criteria 10−7 eV
is set for self-consistent field calculations. The residual forces
exerted on each atom were relaxed in the geometric optimization
computations using a criteria of 10−2 eV/Å. A converged 8×8×8
and 8 × 8 × 6 k-grid was employed for the total energy and
geometric optimization computations for ternary and quaternary
structures, respectively. A denser 21 × 21 × 21 grid for ternary
and 24 × 24 × 18 grid for quaternary structures were adopted
for the further calculations of the electronic density of states and
thermoelectric coefficients.

Phonon dispersions and phonon density of states are calculated
from second order force constants by using the PHONOPY [39]
code which uses finite-differences supercell approximation. We
have used a 3×3×3 supercell for both ScNiSb and MgTiNi2Sb2.
The k-grids used in the phonon supercell calculations are 4×4×4
for ScNiSb and 3 × 3 × 3 for MgTiNi2Sb2.

Electronic transport properties are calculated beyond constant
relaxation time approximation within the AMSET code [40]. Here,
the scattering rates (and hence relaxation times) are obtained
by considering acoustic deformation potential (ADP), ionized
impurity scattering (IMP), polar optical phonon (POP), and
piezoelectric (PIE) scattering processes.

We have also calculated the lattice thermal conductivity (LTC)
by solving the linearized pnonon Boltzmann transport equation
which was implemented in the ShengBTE code [41]. Third order
force constants are obtained with the help of the thirdorder.py
[41] script by considering the interactions between fourth nearest
neighbors. For third order force constants, we have used a 4×4×4
supercell for ScNiSb and 3 × 3 × 3 for MgTiNi2Sb2. For both
materials, the k-grid for the supercells is set to single Γ-point.
In the ShengBTE calculations, we have used a converged q-grid
24× 24× 24 for ScNiSb and 16× 16× 12 for MgTiNi2Sb2. The
scalebroad factor is set to 1.0 for all calculations.

3. Results

3.1. Structural properties
Ternary half-Heusler ScNiSb material crystallize in

face-centered cubic structure and belongs to the space group
F4̄3m (group no. 216). The primitive cell of the structure contains
three atoms, one for Sc, one for Ni, and one for Sb. When we add
another primitive cell to the primitive cell of the face-centered
cubic structure of the ternary half-Heusler ScniSb in a chosen
direction (z direction is preferred in this study), the new structure
contains two Sc, two Ni and, two Sb atoms. When we replace
the two Sc atoms with Mg and Ti, the new MgTiNi2Sb2 material
is formed. As a result of these atomic exchanges, the crystal
symmetry changes. The Ni atoms move slightly away from

Table 1. Lattice parameters, bulk modulus, and the pressure
derivative of the bulk modulus of ScNiSb and MgTiNi2Sb2

Material Study a (Å) c (Å) B0 (GPa) B′

ScNiSb This Work 6.108 105.71 4.56
Calc.[43] 6.104 105.030 4.57
Calc.[44] 6.055
Calc.[45] 6.138 106.03
Expt.[46] 6.068(2)

MgTiNi2Sb2 This Work 4.251 6.003 104.20 4.65

their cubic symmetry position in the z-direction and the system
becomes tetragonal. The resulting MgTiNi2Sb2 quaternary double
half-heusler material crystallizes in the space group P4̄m2 (group
no. 115) [34, 42].

The optimized lattice parameters, bulk modulus, and the
pressure derivative of the bulk modulus of ScNiSb and
MgTiNi2Sb2 are presented in Table 1 along with available
experiments and other calculations. Our calculated results of
ScNiSb are in best agreement with the computational study of
Kocak and Ciftci [43]. The calculated lattice parameter of
ScNiSb is slightly (0.7%) larger than experimental measurement
[46] which is a typical behavior of GGA functional. The
bulk modulus and its pressure derivative are calculated by using
Birch-Murnaghan equation of state[47, 48]. We found that there
is no meaningful difference of bulk modulus and its pressure
derivative bewtween ScNiSb and MgTiNi2Sb2. Our calculated
bulk modulus of ScNiSb is in good agreement with the previous
studies of Refs. [43] and [45].

3.2. Phonon dispersions and phonon density of states.

The phonon dispersion curves obtained by the direct method
are given in Fig. 1 for ScNiSb and in Fig. 2 for MgTiNi2Sb2.
The ternary half-Heusler material ScNiSb has three atoms in the
primitive cell and therefore has nine vibrational modes, three
acoustic and six optical. The quaternary half-Heusler structure
of MgTiNi2Sb2 has 18 vibrational modes, three acoustic and 15
optical, since there are six atoms in its primitive cell. The positive
phonon frequencies in all modes indicate that the materials are
dynamically stable. In ScNiSb material, there is a frequency
gap around 4.5-5 THz between acoustic and optical modes. For
MgTiNi2Sb2, hybridization between the low optical and acoustic
modes is observed around 3 THz and there exist avoided crossings
between the acoustic modes and the lowest optical modes in the
Γ − X and R − A paths. The hybridization and these avoided
crossings appear to be one of the important factors that reduce the
thermal conductivity of the lattice [49, 50].

The calculated phonon density of states for ScNiSb and
MgTiNi2Sb2 are given in Figs. 3 and 4, respectively. In general,
in both materials, antimony atoms contribute predominantly to
the acoustic modes. In the case of MgTiNi2Sb2, Sb atoms also
contribute predominantly in the low optical modes that hybridize
with the acoustic modes. For ScNiSb, the low optical modes
between 5-6 THz contain mainly Ni atoms and the high optical
modes between 6.5-7.5 THz contain mainly Sc atoms. For
MgTiNi2Sb2 material, Ti and Ni atoms contribute at 4.5-7.5 THz
and Mg atoms contribute at 7.5-8.5 THz in the 4.5-8.5 THz optical
frequency region.
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Fig. 1. Phonon dispersion relations of half-Heusler ScNiSb.
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Fig. 2. Phonon dispersion relations of quaternary double
half-Heusler MgTiNi2Sb2.
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Fig. 3. Phonon density of states of ScNiSb.
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Fig. 4. Phonon density of states of MgTiNi2Sb2.

3.3. Electronic properties

Electronic band structures of ScNiSb and MgTiNi2Sb2 are
shown in Figs. 5 and 6, respectively. Both materials exhibit
indirect band gap. The GGA-PBE indirect band gap of ScNiSb
between Γ − X points of the Brillouin zone is calculated as
0.26 eV. This band gap value is surprisingly very close to the
experimental result 0.259 eV of Ref. [51]. This agreement should
be denoted as accidental, because it is well known that GGA band
gaps mostly underestimate experimental measurements. As also
stated in Refs. [51] and [52], the experimental band gaps strongly
influenced by the crystallographic disorder. The indirect band gap
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Fig. 5. Electronic band structure of ScNiSb.
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Fig. 6. Electronic band structure of MgTiNi2Sb2.

of MgTiNi2Sb2 is found slightly larger with 0.29 eV between the
points Γ − Z.

Electronic total and partial density of states are presented in
Figs. 7 and 8 for ScNiSb and MgTiNi2Sb2, respectively. As shown
in Fig. 7, the main contributions near valence band of Fermi level
mostly come from Sc d-states compared to Ni and Sb atoms. For
MgTiNi2Sb2 in Fig. 8, both valence region and conduction region
exhibit very different behavior when we replace the Sc atoms with
Mg and Ti. The magnesium s-states have large contributions to the
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Fig. 8. Total and partial electronic density of states of
MgTiNi2Sb2.

conduction bands and the titanium atoms have large contributions
to the valence bands with a sharp slope near Fermi level. This
slope is an indication of large p-type Seebeck coefficients [53, 54].
In the case of ScNiSb, this slope is not observed.

3.4. Thermoelectric properties
Electronic transport properties, such as Seebeck coefficients,

electrical conductivity, and electronic thermal conductivity are
given in Fig. 9 as a function of carrier concentration for both
electron (n-type) and hole (p-type) dopings in a temperature range
of 300-1000 K. The materials parameters, required to obtain

scattering rates and hence electronic transport properties, such as
elastic constants, deformation potentials, static and high-frequency
dielectric constants, wave-function coefficients, and polar-phonon
frequency are calculated within DFT and density functional
perturbation theory (DFPT) [55].

The Seebeck coefficients are given in Figs. 9(a) and 9(d) for
p-type and n-type systems, respectively. Since the band gaps
of both materials are relatively narrow, the bipolar conduction
effect causes dramatic decrease in Seebeck coefficients at high
temperatures and low concentrations for both p-type and n-type
dopings. The atomic replacement of Sc with Mg and Ti
results a large increase in Seebeck coefficients for p-type doping,
particularly at concentrations around 1021 cm−3. For the n-type
doping, Seebeck coefficients of MgTiNi2Sb2 slightly lower than
ScNiSb around around 1021 cm−3 concentrations.

Figs. 9(b) and 9(e) presents the electrical conductivity
of ScNiSb and MgTiNi2Sb2 for p-type and n-type dopings,
respectively. As can be seen from figures, electrical
conductivity decreases (increases) with increasing temperate
(carrier concentration) for both doping types. The effect of atomic
replacement from ScNiSb to MgTiNi2Sb2 is found to be small for
p-type doping. But for the n-type doping, this replacement caused
a large decrement, especially at higher concentrations.

In Figs. 9(c) and 9(f), we present electronic thermal
conductivity of ScNiSb and MgTiNi2Sb2 for p-type and n-type
dopings, respectively. For the p-type electronic thermal
conductivity, the difference between two materials is relatively
small. But for the n-type doping, a large decrement is observed
with the replacement of Sc with Mg and Ti starting from 1021

cm−3 to higher concentrations.

Before discussing the power factors and the ZT values,
we discuss the phonon transport properties of ScNiSb and
MgTiNi2Sb2. We present our calculated lattice thermal
conductivity results in Fig. 10 which was obtained from
the phonon Boltzmann transport equation without using any
empirical parameters. As shown in figure, the calculated ScNiSb
lattice thermal conductivity is in a very good with experimental
measurements from 300 to 600 K. The increase of experimental
thermal conductivity after 600 K is attributed to the possible heat
loses during the measurements and contributions from bipolar
effects [56]. Since the structure of MgTiNi2Sb2 is tetragonal, we
have found a small anisotropy where the LTC in z-direction is
slightly lower than x- and y-directions. The average lattice thermal
conductivity of MgTiNi2Sb2 is calculated to be about 25% lower
than ScNiSb which is important to obtain larger ZT values.

The calculated Mode Grüneisen parameters, phonon group
velocities, and anharmonic scattering rates are given in Fig. 11.
The overall mode Grüneisen parameters for both materials are
positive and between 0.5 and 2.2 values as shown in Fig. 11(a).
In Fig. 11(b), the phonon group velocities of MgTiNi2Sb2 at
acoustic region (0-4 THz) are considerably lower than those of
ScNiSb which is an indication of lower thermal conductivity as we
reported in Fig. 10. Similar behavior is also reported in TiCoSb
and Ti2FeNiSb2 systems [29]. The anharmonic scattering rates
presented in Fig. 11(b) have found to be similar for both materials.

The calculated power factors (PF=S2σ) and the ZT values are
given in Fig. 12 as a function of carrier concentration for n-type
and p-type dopings in a temperature range of 300-1000 K. Due to
the higher p-type Seebeck coefficients of MgTiNi2Sb2, the highest
power factors are almost two times larger compared to ScNiSb
(Fig. 12(a)). We obtained highest PFs of MgTiNi2Sb2 at carrier
concentrations around 2×1021 cm−3. In the n-type doping, lower
electrical conductivity of MgTiNi2Sb2 strongly effects to the PF
and the highest PFs are found about half of value compared to
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Fig. 9. Electronic transport properties of ScNiSb (dashed lines) and MgTiNi2Sb2 (full lines) as a function of carrier concentration with
temperatures in the range of 300–1000 K. (a) Seebeck coefficient, (b) electrical conductivity, and (c) electronic thermal conductivity for
p-type doping; and (d) Seebeck coefficient, (e) electrical conductivity, and (f) electronic thermal conductivity for n-type system.
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ScNiSb (Fig. 12(c)).

Finally, the calculated ZT values of ScNiSc and MgTiNi2Sb2

as a function of carrier concentration in a temperature range of
300-1000 K for n-type and p-type dopings are given in Fig. 12(b)
and Fig. 12(d), respectively. The total thermal conductivity, as a
sum of calculated lattice and electronic thermal conductivities, is
used for obtaining ZT values. For both materials, the optimum
ZT values at each temperature varies with carrier concentration.

Fig. 11. (a) Mode Grüneisen parameters, (b) phonon group
velocities, and (c) anharmonic scattering rates of ScNiSb (red dots)
and MgTiNi2Sb2 (blue dots).
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temperatures in the range of 300–1000 K. (a) Power factor and (b) ZT of the p-type doping, and (c) power factor and (d) ZT of the
n-type doping.

The highest p-type ZT values for ScNiSb is found to be around
0.5 in a temperature range of 700-1000 K. But for MgTiNi2Sb2,
the highest p-type ZT values continue to increase with respect
temperature and reach to ZT=1.25 value at 1000 K at a carrier
concentration of 1021 cm−3. Thus, by replacing of Sc atoms with
Mg ant Ti, we achieved an 2.5 fold increase in ZT for p-type
doping. For n-type doping, the ZT values are found similar for
both materials where the highest ZT is obtained about 1.25 at
carrier concentration around 1021 cm−3.

4. Conclusion

In this study, a comparative investigation of the thermoelectric
properties of the ternary half-Heusler ScNiSb and quaternary
double half-Heusler MgTiNi2Sb2 have been performed from first
principles. We have found that lattice thermal conductivity
of MgTiNi2Sb2 is about 25% lower than ScNiSb which is
valuable for higher thermoelectic performance. More importantly,
replacement of Sc atoms with Mg and Ti atoms improved
the electronic transport properties and hence power factors and
ZT values for p-type system. We have predicted the highest
p-type ZT=1.25 value of MgTiNi2Sb2 at 1000 K which is
about 2.5 times larger than the ZT value of ScNiSb at the
same temperature. Thus, from our calculations, we conclude
that the quaternary half-Heusler materials are promising novel
thermoelectric materials worth further synthesizing efforts, not
only for their lower thermal conductivity behavior, but also for
their enhanced electronic transport properties.
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Gürel. “Promising room temperature thermoelectric
conversion efficiency of zinc-blende AgI from first
principles”. J. Phys. Condens. Matter 33 (2021),
p. 015501. DOI: 10.1088/1361-648X/abb867.

[48] M. Hebbache and M. Zemzemi. “Ab initio study
of high-pressure behavior of a low compressibility
metal and a hard material: Osmium and diamond”.
Phys. Rev. B 70 (2004), p. 224107. DOI: 10 . 1103 /
PhysRevB.70.224107.

[49] W. Li, J. Carrete, G. K. Madsen, and N. Mingo.
“Influence of the optical-acoustic phonon
hybridization on phonon scattering and thermal
conductivity”. Phys. Rev. B 93 (2016), p. 205203.
DOI: 10.1103/PhysRevB.93.205203.

133



Thermoelectric properties of half-Heusler and quaternary half-Heusler materials Journal of Balkan Science and Technology 2022: 1(3): 126-134
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