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Navier solution presented for bending, buckling, and free vibration of simply supported functionally graded
nanobeams based on generalized shear deformation theory. The results are obtained for parabolic shear
deformation theory corresponding to Reddy beam theory using nonlocal differential constitutive equations
which were formulated by Eringen [1,2,3]. The material properties of the functionally graded nanobeam
vary through the thickness direction according to a simple power law. Effects of the nonlocal parameter,
different material composition and length-to-thickness ratio on the maximum deflection, critical buckling
load, and natural frequencies of the nanobeam are investigated. The results show that the scale effects,
material composition, and dimensional changes are affected by considered parameters. Nonlocal elasticity
theory predicts softening material behavior compared to classical elasticity theory because it takes into
account the effects of long-range interactions between material particles. As a result of this, the maximum
deflections, critical buckling loads, and natural frequencies obtained by the classical theory are higher than
obtained by the nonlocal theory in all considered conditions.
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1. Introduction

Classical elasticity assumes that the stress at a point
depends only on the local deformation of the material.
However, nonlocal elasticity accepts that the stress at a point
also depends on the deformation of neighboring points, which
are weighted according to a nonlocal kernel function unlike
classical elasticity [1,2,3]. The non-local approach is
particularly useful for modeling materials with non-local
effects, such as nanomaterials and biological tissues, where the
interactions between particles are not limited to the immediate
vicinity of a point, but can also be an effective approach for
wave propagation, fracture behavior, and stability of structures.
Nonlocal elasticity has been applied in a variety of fields,
including materials mechanics, structural engineering, and
biomechanics, although its formulation is more complex than
classical elasticity and requires numerical techniques to solve
governing equations.

There are many presented analytical solutions on the
mechanical behavior of nanobeams such as bending, buckling,
and vibration based on Euler-Bernoulli beam theory and
Timoshenko beam theory, which in the framework of nonlocal
constitutive relation proposed by Eringen. Reddy [4] presented
an analytical solution of bending, buckling, and vibration of
nanobeams using various beam theories including the Euler-
Bernoulli, Timoshenko, Reddy, and Levinson beam theories
based on the nonlocal elasticity. Thai [5] proposed a nonlocal
shear deformation theory for bending, buckling, and vibration
of nanobeams using the nonlocal differential constitutive

relations of Eringen. According to the theory, shear strains and
consequently shear stresses vary quadratically through the
thickness. The Euler-Bernoulli, Timoshenko, Reddy, Levinson,
and Aydogdu beam theories are used as a special case by
Aydogdu [6] on bending, buckling, and vibration of
nanobeams. Ghannadpour et al. [7] investigated bending,
buckling, and vibration based on nonlocal Euler-Bernoulli
beam theory using Ritz method. Wang et al. [8] concerned with
the bending problem of micro- and nanobeams based on the
Eringen nonlocal elasticity theory and Timoshenko beam
theory. Lu et al. [9] used nonlocal Euler-Bernoulli beam theory
for vibration analysis of nanobeams.

Li et al. [10] considered the free vibration of nonlocal
Euler and Timoshenko beams. It was provided a novel
explanation for the stiffening phenomenon of nonlocal
cantilever beams, clarified the effects of local and nonlocal
boundary conditions on the free vibration, and revealed the
effects of different constitutive relations for nonlocal
Timoshenko beams. Wang et al. [11] concerned with the free
vibration problem for micro/nanobeams modeled after
Eringen’s nonlocal elasticity theory and Timoshenko beam
theory.

Thai and Vo [12] used a sinusoidal shear deformation
beam theory which is capable of capturing both small-scale
effect and transverse shear deformation effects of nanobeams,
and does not require shear correction factors for the bending,
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buckling, and vibration of nanobeams. Eltaher et al. [13] used
an efficient finite element model for dynamic characteristics
analysis of a nonlocal Euler—Bernoulli nanobeam. Roque et al.
[14] used the nonlocal elasticity theory of Eringen to study
bending, buckling, and free vibration of Timoshenko
nanobeams. A meshless method was presented to obtain
numerical solutions.

Functionally graded materials (FGMs) are a class of
engineered materials that are designed to have spatial variations
in their composition and/or microstructure to achieve specific
mechanical, thermal, electrical, or other properties. Unlike
traditional materials, which have uniform properties throughout
their volume, FGMs exhibit a gradual or abrupt transition in
their properties along one or more directions [15]. The concept
of FGM was first developed by Japanese researchers in the
1980s as materials capable of withstanding the extreme
temperature changes were encountered in aerospace
applications but has since found a wide range of applications in
fields such as aerospace, energy, biomedical engineering, and
materials science. While FGMs can be designed to exhibit a
variety of property gradients, such as variations in composition,
porosity, grain size, and fiber orientation, the composition
gradient is the most common type of gradient. The composition
gradient involves a gradual change in the type or concentration
of one or more constituents of the material as in the example of
a metal-ceramic FGM which has a gradient in the concentration
of ceramic particles increasing from one end of the material to
the other.

Although the design and fabrication of FGMs can be
challenging and require advanced materials processing
techniques, they have a wide range of potential application
areas due to their several advantages over traditional
homogeneous materials, such as improved fracture resistance,
reduced stress concentration, and enhanced thermal shock
resistance. FGM structures which can be designed and
optimized for specific applications by tailoring their
composition and properties have a wide range of applications
such as aircraft and spacecraft components, missile
components, armor plating, dental implants, prosthetics, bone
grafts, fuel cells and batteries, heat sinks and heat exchangers,
bridges, buildings, and other civil engineering structures.

There are many studies in the literature dealing with
bending, buckling, and free vibration of functionally graded
beams [16-29]. With this, bending, buckling, and free vibration
are important mechanical behaviors that need to be analyzed in
order to design and optimize functionally graded nanobeam
structures for various nano applications. Eltaher et al. [30]
presented a free vibration analysis of functionally graded size-
dependent nanobeams using a finite element method based on
nonlocal Euler-Bernoulli beam theory. Simsek and Yurtcu [31]
investigated static bending under uniformly distributed load
and buckling analysis of functionally graded nanobeams based
on nonlocal Timoshenko beam theory that first-order shear
deformation theory. Buckling results and vibration results of
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functionally graded nanobeams based on Reddy theory were
presented by Rahmani and Jandaghian [32] and Ebrahimi and
Barati [33], respectively. Explicit analytical equations for the
vibration of a bidirectional functionally graded nonlocal
nanobeam are presented by Nazmul et al. [34].

However, it is seen that the effect of Poisson ratio was not
taken into account in these studies on functionally graded
nanobeams. However, the Poisson ratio is a measure of the
deformation of a material in response to an applied force. It is
defined as the ratio of the lateral strain to the longitudinal strain
in a material when it is stretched or compressed. In other words,
it is a measure of how much a material will shrink or expand
perpendicular to the direction of an applied force. The value of
Poisson’s ratio is an important factor in determining the
mechanical behavior of materials under stress, as it affects their
elastic modulus, shear modulus, and other mechanical
properties. It becomes even more important to consider the
effect of Poisson ratio in functionally graded materials where
mechanical properties such as elastic modulus, density, and
Poisson ratio vary across thickness. The static bending, the
buckling, and the free vibration of the functionally graded
nanobeam with the effect of Poisson's ratio taken into account
is the subject of this paper. In this study, the generalized shear
deformation theory with the shape function corresponding to
the Reddy theory is used based on the nonlocal elasticity theory.
The material properties of the functionally graded nanobeam
assumed to vary in the thickness direction. The Navier-type
solution is used for simply-supported boundary conditions, and
exact formulas are proposed for the maximum deflections, the
critical buckling load, and the natural frequencies. The effects
of the nonlocal parameter ((eoa)?), the material composition (p
index), and the length-to-thickness ratio (L/h) on the static, the
stability and free vibration responses of the functionally graded
nanobeam are discussed.

2. Theoretical formulations

2.1 Nonlocal elasticity theory

According to nonlocal elasticity theory, different from the
classical elasticity theory, the stress field at a point x in an
elastic continuum not only depends on the strain field at the
same point but also on strains at all other points of the body. As
a result of this, in classical elasticity theory, the behavior of a
material is described purely in terms of its local properties, such
as its stiffness and strength. However, in nonlocal elasticity
theory, the behavior of a material is also affected by the
material's microstructure, such as the size and shape of its
particles. Nonlocal elasticity theory introduces a length scale
parameter known as the nonlocal parameter, which is related to
the material's microstructure. The presence of this length scale
parameter causes the stress and strain in a material to be more
distributed over a larger area, which leads to a reduction in the
overall stiffness of the material. This effect is particularly
pronounced in materials with a high surface area-to-volume
ratio, such as nanomaterials. Therefore, nonlocal elasticity
theory predicts that the material will be less stiff and less
resistant to deformation than classical elasticity theory. In other
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words, the material will exhibit a softer response to external
loads.

The nonlocal stress tensor ¢ at point x is defined as follows:

o) = f a(lx = x|, DEE)AV() 1)

t(x) = C(x):e(x) 2

where t(x) is the classical, macroscopic stress tensor at
point x, a(|x-x|,t) is the Kernel function and t is the material
constant which depends on a constant appropriate to each
material (eo), internal characteristic (a) such as lattice
parameter, granular distance and external characteristic length
() such as crack length, wavelength. With the reduced and
simplified differential form of Eq. (1) and using Eqg. (2) the
relationship between classical, macroscopic stress tensor t and
nonlocal stress tensor ¢ is given by Laplacian operator V as
follows:

(1 - 1212V?)6 = C(x): (x) 3)
It is seen that when the internal characteristic length a is
zero, nonlocal elasticity corresponds to classical elasticity.

2.2 Governing equations of functionally graded nanobeams

The considered functionally graded nanobeam is a
straight prismatic beam with length L along the x-axis and
thickness h along the z-axis. The governing equations in terms
of reduced stiffness coefficients, including Poisson's ratio
effects, are as follows:

d2
1- (eoa)zﬁ)ox =Q1&

d2
1- (eoa)zﬁ)rxz = Qs5Yxz 4)

Where Qij are the reduced stiffness coefficients defined
according to FGMs as follows:
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The displacement model of the beam defined according
to the generalized shear deformation theory, as the axial
displacement defined at any point, wi and the vertical
displacement ws are as follows:

ow

wy; =u(xt) —z 7%

+f(z)u; (% 1)

wy, =0

(6)

w; = w(x;t)

where u and w are the displacement components of a point on
the mid-plane of the beam along the x- and z- axis, respectively.
And f(z) is the transverse shear shape function which
determines the distribution of the transverse shear strains and
stresses throughout the beam thickness. Frequently used shape
functions and derivatives along with their corresponding
theories are given in Table 1 and illustrated in Fig.1.

Table 1. The mostly used transverse shape functions and
derivatives along with their corresponding theories.

Shape function

Derivative of shape Corresponding

function theory
f(z)=0 a0 Euler-Berrnoulli
“ beam theory
(EBT)
f(z) =z af _ Timoshenko beam
“ theory (TBT)
f(z) =z (1 - g —1_ %2 Reddy beam
ﬂ) theory (RBT)
3n2
£(z) = z3_z§f,/3h)z % _ 3%/3‘1)2 (1 B %2) Aydogdu  beam
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Fig 1. Variation of the frequently used (a) transverse shape functions and (b) derivatives along with their corresponding theories

throughout the thickness coordinate.
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The strain components in terms of the displacement
components are as follows:

du %w ou,
& =——z2—+f(z)—
X ox ox2 + ( ) ox

df
Yxz = E Uy (7)

The internal force and moment resultants are as follows:

h/2

(NE, M) = f 0,(1,2)dz
2

h/2
M3d = f 0,f(z)dz
—h/2

h df
Qe = [, T (G dz ®

The constitutive relations are as follows:

U,y
~Wixx
Uq,x

{stcd = [Ass]{u1} 9)

M)C( Bll D11 1:11

N [An Bi1 Eny
Msd Ei1n Fiu Hpp

The extensional, coupling, bending, and transverse shear
rigidities are as follows:

h/2

(A11,B11,D11) = Q1:1(L,z ZZ)dZ
h/2

h/2

(E11,Fi,Hyp) = "y Q11 f(z) (1,2 f(z))dz
2

bz odf
Ags = Qss (&) dz (10)
—h/2

The governing equations of nanobeam obtained using principle
of virtual work are as follows:

ONS 2 07 ( 9%u *w 62u1)
x (1—(eea) axz) Pogz ~ P axatz+Po1 o

9*M§ 2 02 ( ’w a%u
axz (1 - (eo) a2 \Po e T P1g50

*w 3u, e 02w . )
P25z T P11 550e Ny ax2 q(xt)

amsd sd _ 2 02 9%u 3w
—a; - Q% = (1 —(epa) @) (Pmﬁ P15 +

9%u, (11)
)

Where inertia terms are as follows:
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h : .
pi = f_}ffz p(z)z'dz (i=0,1,2)
= /2 jgm A
Pim = f—h/z p(Z)Z fj dz (J—O,l , m—1,2) (]_2)

Where p is the mass per unit volume.
2.3. Functionally graded materials

The considered structural element is a straight prismatic
functionally graded nanobeam having length L along the x-axis
and thickness h along the z-axis. Effective material properties
elasticity modulus (E), Poisson ratio (v) and mass density (p)
are varying in the thickness direction according to a simple
power law distribution defined as follows:

Perr = VyPy + VLB,

VU+VL=1
V _(Z 1)pz
v=ht2
VA 1 Pz VA 1 Pz
Peff=(H+§) PU+(1_(H+E) )PL (13)

where Peff corresponding to the effective material
property, the subscript U and L corresponding to the material
property of the upper and lower surface, respectively. In this
study upper surface material ceramic rich and lower surface
material metal rich are preferred. Variation of the volume
fraction VU through the thickness direction of the functionally
graded nanobeam is given in Fig.2 where VU is the volume
fraction of the ceramic; and pz is the volume fraction exponent,
0<pz<o. Different value of the volume fraction of VU
corresponds to different distribution of material composition on
functionally graded nanobeam: e.g. if that value is O, material
of the nanobeam is ceramic; if that value is 1, the variation of
the volume fraction of the ceramic is linear from lower surface
to upper surface. If the ceramic volume ratio is different from 0
and 1, variation of the material composition is nonlinear.

T T T T
oaa oz o4 a.n o3 La

W

Fig 2. Variation of the volume fraction VU (ceramic
component) through the thickness direction of the
functionally graded nanobeam.
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2.4 Analytical solution for bending, buckling, and free
vibration of simply supported functionally graded
nanobeam

In this study Navier method is applied for static bending,
buckling, and free vibration problem of functionally graded
nanobeam. The sets of boundary conditions of the beam at x=0,
L are as follows:

either u or NS = N,
either w or MS, = Qy
either w_x or M§ = M,

either u, or M2 = M2 (14)
where N,, Q,, M,, M2 are corresponding to prescribed force
and moment resultants acting on the beam boundaries.

The simply supported boundary conditions of nanobeam are as
follows:
NE=w=M{=M2=0 (15)

The nanobeam equations given by Eq.(11) are organized
as the external force (Nxe) term, and time dependent terms are
zero on bending problem. Similarly the equations are organized
as the time dependent terms and transverse load (g(x;t)) term
are zero on buckling problem. Similarly the equations are
organized as the external force (Nxe) term and transverse load
(q(x;t)) term are zero on free vibration problem.

The kinematic components that provide the simply
supported boundary condition in the bending and buckling
analysis of the nanobeam examined are as follows:

u(x) = Amcos$

w(x) = Cp,sin %

mmx
Ly, (x) = DmcosT

(16)
where u and w are the displacement components of a point in
the midplane in the x and z directions; and ul is the
displacement components showing effects of vertical shear
strains in the midplane. For bending analysis, the transverse
load that provides the simply supported boundary condition is
defined in the Fourier series form as follows:

q(x) = ZM_; Qsin ™™

2 (L . mmx
Qm = —f q(x)sin——dx )
L, L

Considered two types of loading that one of uniformly
distributed load and one of point load condition in bending
analysis are defined as follows:

Uniformly distributed load;
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A = do, Qm =22 (-1)™1,(m = 1,35,..),

m (18)
Qn=0 (m=246,..)
Point load applied to point x0 from x=0to L:
2qo . mmx,
qx) =99, Qu = Tsm L (m=123..) (19

Firstly by substituting of the expansions Eg.(16) and
Eq.(17) into Eqg.(11) and then by applying non-
dimensionalization procedure, max deflection is
obtained.

For buckling analysis, the external in-plane uniaxial
compression load is defined as follows:

(20)

Firstly by substituting of the Eq.(16) and Eq.(20) into
Eq.(11) and then by applying non-dimensionalization
procedure critical buckling load is obtained.

The kinematic components that provide the simply
supported boundary condition in the free vibration
analysis of the nanobeam examined in the xz-plane are as
follows:

mmx |
u(x) = AmcosTsmwt

. m]TX .
w(x) = Cp,sin Tsmwt

Lu, (x) = Dmcos$sinwt (21)
Firstly by substituting of the Eq.(21) into Eqg.(11) and
then by applying non-dimensionalization procedure an
eigenvalue problem in matrix form is obtained as
follows:

A
[K;; — Q2My] {Cm} = {0}

m

(22)

where Q is the frequency parameter corresponding to
pew?and pe represent mass density of ceramic component of the
functionally graded material. The solution of the eigenvalue
problem given by Eq.(22) gives the natural frequencies of the
nanobeam.

3. Numerical results

The static bending, axial buckling, and free vibration
analyses are carried out for functionally graded nanobeams
whose material properties vary through the thickness direction
according to a simple power rule. The solutions are obtained by
the Navier method and hence for the simply supported
boundary condition. The material properties considered in this
study are given in Table 2.

Non-dimensionalization terms are used in the study as follows:

Uniformly distributed load;
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@ = 100EcD, ( Ech3 ) results obtained by considering the Poisson ratio, the bending

qoL* (23) deformation takes smaller values, while the critical buckling

) . ) load and natural frequencies take larger values.
Table 2. Mechanical properties of component materials of

functionally graded material which are considered in the study. Table 3. Comparison of non-dimensional maximum center
deflection of nanobeam under uniformly distributed load,
Compgnent Elasticity Pons_son Mass 3Densnty (v=03, W = 1001::3 W, go=1).
Material Modulus (GPa) Ratio (kg/m®) qolL

304

L/h=10 L/h=100

201.04 0.3262 8166

(Metal) Present Present
SisNa Ref. without oM per (5] (without | oot
(Ceramic) 348.43 0.2400 2370 [5] 9 (with v) A (with v)

1.3346  1.3059 11913 13024  1.2735 1.1589
14622  1.4347 13088  1.4274  1.3992 1.2733

Point load applied to point x0 from x=0to L: LA | Aty [ s | A | Beml) | SR

1.7174  1.6925 15440 16775  1.6506 1.5021

_ D, 1.8450 1.8214 1.6616  1.8025  1.7763 1.6165
W= (24)
qolL3
Critical buckling load: _ _ _ )
Table 4. Comparison of non-dimensional maximum center
N NoL? (25) deflection of nanobeam under point load at center, (vV=0.3, W =
= 100EI _
DO q0L3 w, qO—l).
Natural frequency parameter: L/h=100
(e0a)? Ref. Present Present o 4] Present Present
A = @l2 & (26) [4] (without v) (with v) ' (without v) (with v)
Do “ 1.9878 2.0513 18713 1.9449 2.0005 1.8205
21564  2.2537 20560  2.1115 2.1979 2.0002
2.3250 2.4562 22406 2.2782 2.3954 2.1798
The thickness (h) of functionally graded nanobeam is 1 24936 2.6586 24253 24448 2.5928 2.3595
nm. Effects of the nonlocal parameter ((eca)?), different “ 2.6623 2.8611 2.6100  2.6115 2.7903 2.5392

material composition (pz) and the beam geometry (length-to-
thickness) on the bending, buckling, and vibration are

investigated. Table 5. Comparison of non-dimensional critical buckling load

NoL2 ).

under uniaxial compression load, (v=0.3, N =

EI

L/h=100
Present Present Ref. [4]  Present Present
(without v) (with v) (withoutv)  (with v)

The comparison results for bending, buckling, and
vibration are given in Table 3-7. The results obtained in this
study are quite self-consistent among themselves. In addition,
although a good agreement is observed in the comparison “
results, it is also seen that there are some differences between 8.7583 8.7582 9.6007  8.9807 8.9806 9.8686
them. Although both of the generalized shear deformation [

theory and the Reddy theory are higher-order beam theories that
take into account the effect of transverse shear deformation, IAZE razs el e 220828

Ref. [4]

9.6228 9.6226 10.5483  9.8671 9.8670 10.8425

8.0363 8.8093 8.2405 8.2404 9.0551

which is neglected in classical beam theories. In this study, in- 6.8990 7.5626  7.0743 7.0742 7.7736
plane displacement components are also taken into account,

leading to some differences between the results. However, the Table 6. Comparison of non-dimensional fundamental

effef:t of P0|s§on's'rat|o.on the mechanical behaw.or of peams is frequencies, (v=0.3, A = wL? \/E ).

particularly significant in cases where the beam is subjected to EI

out-of-plane deformation such as bending. In such cases, the
beam experiences both tensile and compressive stresses along

L/h=100

Present Present Present Present

|ts.length, as.well as shear str.esses acrqss its cros.s-.sectlon. (withoutv)  (with ) Ref. [5] (withoutv)  (with )
Poisson s. ratio plays a crucial role in determining .the T RN e o
deformation of the beam under these complex loading

L - . . S 9.2608 9.6961 9.4143 9.4142 9.8687
conditions. As it is seen in comparison results, considering the
Poisson ratio in case of axial stress also affects the results. 88709 R 9.0179 94532
Because when the effect of Poisson's ratio is taken into account, 8.5265 8.9273 8.6678 8.6677 9.0861
the material exhibits a more rigid behavior. As a result, in the 8.2193 8.6057 8.3555 8.3554 8.7588
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Table 7. Comparison of first three non-dimensional

— 2 |P>
A—u)L\/;).

fundamental frequencies, (L/h=5, v=0.3,

Present
(without
V)

Present
(with v)

Modes  (eoa)?

0 9.2745  9.2690  9.6740
B 8.8482 88429  9.2293
B : 84757 84706  8.8407
B 8.1466 81417  8.4975
¢ 7.8530  7.8484  8.1913
0 321847  31.9441 330538
P 1 272519 270481 27.9878
[ 2 240589 23.8790  24.7086
B : 217765  21.6137  22.3646
[ 4 200407 198008 205818
0 615746  59.8105  61.3641
P 1 448095 435257 44.6563
B 36.9531 358943  36.8267
P 3 321645 312430 320545
[ 4 288569  28.0301  28.7582

Table 8 and Table 9 show that the results of bending
analysis of functionally graded nanobeam under uniformly
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distributed load and point load respectively. In all considered
conditions in terms of material composition or geometry,
maximum deflection increased with increasing nonlocal
parameter value. This result confirms the nonlocal elasticity
behavior of the considered material. The volume ratio exponent
pz determines the rate of change of the ceramic volume fraction
from the lower surface to the upper surface; and as the p; value
increases, the ceramic volume ratio decreases, and the metal
volume ratio increases. As a result, it can be said that the
maximum deflection increases with increasing p: value and
therefore with increasing metal volume ratio. From the
geometric point of view, the maximum deflection value
decreases with the increase of L/h value; that is, the decrease in
nanobeam thickness, in both loading conditions. However, in
terms of all parameters examined, the beam with at least L/h=50
ratio is affected by all variation amounts.

According to the buckling results given in Table 10, the
critical buckling load decreases as the p; value and the nonlocal
parameter value increase, so the material becomes softer. And,
as the value of L/h increases, it increases; that is, the strength of
the material against buckling increases.

The free vibration results for first three natural
frequencies are presented in Table 11-Table 13. The natural
frequencies decrease as the pz value and the nonlocal parameter
value increase, but increase as the L/h value increases, similar
to the buckling results. However, unlike the buckling results,
vibration frequencies are less affected by the change of
parameters. It can be thought that the reason for this is not an
applied external force.

Table 8. Non-dimensional maximum center deflection under uniformly distributed load.

1.3063
1.4352

1.5641
1.6930
1.8220

1.2815
1.4079
1.5344
1.6609
1.7874

1.2745
1.4003
1.5261
1.6519
17777

0.2
1.4217

1.5620
1.7023
1.8427
1.9830

1.3949
1.5326
1.6703
1.8080
1.9457

1.3875
1.5244
1.6613
1.7983
1.9352

Volume fraction exponent p,

0.5
1.5418

1.6940
1.8461
1.9983
2.1505

1.5126
1.6619
1.8111
1.9604
2.1097

1.5044
1.6529
1.8013
1.9498
2.0983
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1 2 5 10
1.6552 1.7496 1.8455 1.9260
1.8186 1.9223 2.0276 2.1160
1.9820 2.0949 2.2098 2.3061
2.1453 2.2676 2.3919 2.4962
2.3087 2.4403 2.5741 2.6863
1.6227 1.7126 1.8031 1.8816
1.7829 1.8816 1.9810 2.0673
1.9431 2.0507 2.1590 2.2530
2.1032 2.2197 2.3370 2.4387
2.2634 2.3887 2.5149 2.6244
1.6136 1.7023 1.7912 1.8691
1.7729 1.8703 1.9680 2.0536
1.9322 2.0383 2.1448 2.2381
2.0914 2.2063 2.3216 2.4226
2.2507 2.3743 2.4983 2.6070
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Table 9. Non-dimensional maximum deflection under point load at center.

Volume fraction exponent p,

(eca)?

0 0.2 05 1 2 5 10
0 2.0519 2.2332 2.4219 2.6001 2.7482 2.8989 3.0253
1 2.2544 2.4536 2.6609 2.8567 3.0195 3.1850 3.3239
2 2.4569 2.6740 2.8999 3.1133 3.2907 3.4712 3.6225
3 2.6594 2.8945 3.1390 3.3699 3.5620 3.7573 3.9211
4 2.8620 3.1149 3.3780 3.6265 3.8332 4.0434 4.2197
0 2.0129 2.1912 2.3760 2.5490 2.6902 2.8323 2.9556
1 2.2116 2.4075 2.6105 2.8006 2.9557 3.1118 3.2473
2 2.4103 2.6237 2.8450 3.0522 3.2212 3.3914 3.5390
3 2.6090 2.8400 3.0795 3.3038 3.4867 3.6709 3.8307
4 2.8076 3.0563 3.3140 3.5553 3.7523 3.9505 4.1224
0 2.0020 2.1794 2.3631 2.5347 2.6739 2.8136 2.9360
1 2.1996 2.3945 2.5963 2.7849 2.9378 3.0913 3.2258
2 2.3972 2.6096 2.8296 3.0351 3.2018 3.3690 3.5156
3 2.5948 2.8247 3.0628 3.2852 3.4657 3.6467 3.8054
4 2.7924 3.0399 3.2960 3.5354 3.7296 3.9244 4.0952

Table 10. Non-dimensional critical buckling load under uniaxial compression load.

Volume fraction exponent p,

0 0.2 0.5 1 2 5 10
9.6197 8.8387 8.1502 7.5916 7.1823 6.8090 6.5245
8.7556 8.0447 7.4180 6.9097 6.5371 6.1973 5.9384
8.0339 7.3816 6.8066 6.3401 5.9983 5.6865 5.4489
7.4221 6.8195 6.2883 5.8573 5.5415 5.2535 5.0340
6.8969 6.3369 5.8433 5.4429 5.1494 4.8817 46778
9.8058 9.0081 8.3076 7.7436 7.3373 6.9692 6.6785
8.9250 8.1989 7.5614 7.0480 6.6782 6.3431 6.0785
98.1893 7.5231 6.9381 6.4671 6.1277 5.8203 5.5775
7.5657 6.9502 6.4098 5.9746 5.6611 5.3771 5.1528
7.0303 6.4584 5.9562 5.5518 5.2605 4.9966 4.7872
— 9.8593 9.0568 8.3528 7.7873 7.3819 7.0154 6.7229
8.9736 8.2432 7.6025 7.0878 6.7188 6.3852 6.1190
8.2339 7.5638 6.9758 6.5036 6.1650 5.8589 5.6146
7.6069 6.9878 6.4446 6.0083 5.6955 5.4127 5.1871
7.0686 6.4933 5.9886 5.5832 5.2925 5.0297 4.8200

44



Bending, buckling and vibration of functionally graded nanobeams

Journal of Balkan Science and Technology 2023: 2(1): 37-47

Table 11. Non-dimensional fundamental natural frequency parameter.

4, Conclusion

The aim of the study is to show that the nonlocal theory
of elasticity is an effective tool for predicting the mechanical
behavior of functionally graded nanobeams. The incorporation
of nonlocal effects into models of bending, buckling, and
vibration can provide valuable insights into the behavior of
these structures and can aid in the design of advanced

45

Volume fraction exponent p;

0 0.2 05 1 2 5 10
9.7056 7.8369 6.6273 5.7806 5.1701 4.6857 44533
9.2594 7.4766 6.3227 5.5149 4.9324 44703 4.2486
8.8696 7.1618 6.0565 5.2827 47247 42821 4.0697
8.5252 6.8837 5.8213 5.0776 45413 4.1158 3.9117
8.2181 6.6357 5.6116 4.8947 43777 3.9675 3.7707
9.8277 7.9370 6.7131 5.8571 5.2414 47536 45178
9.3759 7.5721 6.4045 5.5878 5.0004 45351 43101
8.9811 7.2533 6.1348 5.3526 4.7899 43442 4.1286
8.6324 6.9717 5.8966 5.1448 4.6039 4.1755 3.9683
8.3214 6.7205 5.6842 4.9594 4.4380 4.0250 3.8253
9.8628 7.9658 6.7378 5.8791 5.2620 47732 45364
9.4094 7.5996 6.4280 5.6089 5.0201 45538 43279
9.0133 7.2797 6.1574 5.3727 4.8087 43621 4.1457
8.6633 6.9970 5.9183 5.1641 4.6220 41927 3.9847
8.3511 6.7449 5.7051 49781 4.4555 4.0416 3.8411

Table 12. Non-dimensional second natural frequency parameter.
Volume fraction exponent p;

0 0.2 05 1 2 5 10
37.0562 29.9004 25.2717 22.0217 19.6578 17.7734 16.8925
31.3767 253177 21.3984 18.6465 16.6449 15.0493 14.3034
27.7004 223513 18.8912 16.4618 14.6947 13.2861 12.6276
25.0726 20.2309 17.0991 14.9001 13.3007 12.0257 11.4296
23.0740 18.6183 15.7361 13.7124 12.2405 11.0671 10.5186
38.8226 31.3476 26.5095 23.1227 20.6804 18.7430 17.8133
32.8724 26.5431 22.4464 19.5788 17.5108 15.8703 15.0831
29.0208 23.4331 19.8165 17.2848 15.4591 14.0108 13.3159
26.2677 21.2101 17.9366 15.6451 13.9926 12.6817 12.0526
24.1739 19.5194 16.5068 14.3980 12.8772 11.6708 11.0919
39.3708 31.7973 26.8946 23.4662 21.0008 19.0481 18.1030
33.3365 26.9238 22.7726 19.8696 17.7821 16.1286 15.3284
29.4307 23.7692 20.1044 17.5416 15.6986 14.2389 13.5325
26.6387 215143 18.1972 15.8775 14.2094 12.8881 12.2487
245153 19.7994 16.7466 14.6119 13.0767 11.8608 11.2723

nanomaterials and devices. The material properties of
functionally graded nanobeam were considered varying
according to simple power law along the thickness direction.
Effect of the nonlocal parameter ((eoa)?), variation of volume
fraction exponent (p;), and the geometrical parameters of
nanobeam (length -to-thickness) on the bending under
two types of loading conditions, buckling under uniaxial
compression loading condition and free vibration were



Bending, buckling and vibration of functionally graded nanobeams Journal of Balkan Science and Technology 2023: 2(1): 37-47

Table 13. Non-dimensional third natural frequency parameter.
Volume fraction exponent p;

0 0.2 0.5 1 2 5 10
10 77.8803 62.7809 53.0270 46.1532 41.0983 37.0424 35.2069
56.6756 45.6874 38.5891 33.5869 29.9083 29.9567 25.6210
46.7387 37.6770 31.8233 27.6981 24.6645 22.2304 21.1289
40.6820 32.7946 27.6995 24.1088 21.4683 19.3497 18.3909
36.4986 29.4222 24.8510 21.6297 19.2607 17.3599 16.4997
I
20 85.6191 69.1127 58.4315 50.9444 45.5245 41.2156 39.1720
62.3073 50.2952 42.5222 37.0736 33.1294 29.9937 28.5065
51.3830 41.4769 35.0668 30.5735 27.3208 24.7349 23.5085
44.7245 36.1021 30.5226 26.6116 23.7804 21.5296 20.4621
40.1253 32.3896 27.3839 23.8750 21.3350 19.3157 18.3579
I
50 88.2852 71.2985 60.3027 52.6114 47.0768 42.6913 40.5734
64.2475 51.8858 43.8839 38.2868 34.2590 31.0676 29.5263
52.9830 42.7887 36.1897 31.5739 28.2524 25.6205 24.3495
46.1172 37.2439 31.5001 27.4824 24.5913 22.3005 21.1942
41.3748 33.4140 28.2608 24.6563 22.0625 20.0073 19.0147
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