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 Navier solution presented for bending, buckling, and free vibration of simply supported functionally graded 

nanobeams based on generalized shear deformation theory. The results are obtained for parabolic shear 

deformation theory corresponding to Reddy beam theory using nonlocal differential constitutive equations 

which were formulated by Eringen [1,2,3]. The material properties of the functionally graded nanobeam 

vary through the thickness direction according to a simple power law. Effects of the nonlocal parameter, 

different material composition and length-to-thickness ratio on the maximum deflection, critical buckling 

load, and natural frequencies of the nanobeam are investigated. The results show that the scale effects, 

material composition, and dimensional changes are affected by considered parameters. Nonlocal elasticity 

theory predicts softening material behavior compared to classical elasticity theory because it takes into 

account the effects of long-range interactions between material particles. As a result of this, the maximum 

deflections, critical buckling loads, and natural frequencies obtained by the classical theory are higher than 

obtained by the nonlocal theory in all considered conditions. 
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1. Introduction 

Classical elasticity assumes that the stress at a point 

depends only on the local deformation of the material. 

However, nonlocal elasticity accepts that the stress at a point 

also depends on the deformation of neighboring points, which 

are weighted according to a nonlocal kernel function unlike 

classical elasticity [1,2,3]. The non-local approach is 

particularly useful for modeling materials with non-local 

effects, such as nanomaterials and biological tissues, where the 

interactions between particles are not limited to the immediate 

vicinity of a point, but can also be an effective approach for 

wave propagation, fracture behavior, and stability of structures. 

Nonlocal elasticity has been applied in a variety of fields, 

including materials mechanics, structural engineering, and 

biomechanics, although its formulation is more complex than 

classical elasticity and requires numerical techniques to solve 

governing equations. 

There are many presented analytical solutions on the 

mechanical behavior of nanobeams such as bending, buckling, 

and vibration based on Euler-Bernoulli beam theory and 

Timoshenko beam theory, which in the framework of nonlocal 

constitutive relation proposed by Eringen. Reddy [4] presented 

an analytical solution of bending, buckling, and vibration of 

nanobeams using various beam theories including the Euler-

Bernoulli, Timoshenko, Reddy, and Levinson beam theories 

based on the nonlocal elasticity. Thai [5] proposed a nonlocal 

shear deformation theory for bending, buckling, and vibration 

of nanobeams using the nonlocal differential constitutive 
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relations of Eringen. According to the theory, shear strains and 

consequently shear stresses vary quadratically through the 

thickness. The Euler-Bernoulli, Timoshenko, Reddy, Levinson, 

and Aydogdu beam theories are used as a special case by 

Aydogdu [6] on bending, buckling, and vibration of 

nanobeams. Ghannadpour et al. [7] investigated bending, 

buckling, and vibration based on nonlocal Euler-Bernoulli 

beam theory using Ritz method. Wang et al. [8] concerned with 

the bending problem of micro- and nanobeams based on the 

Eringen nonlocal elasticity theory and Timoshenko beam 

theory. Lu et al. [9] used nonlocal Euler-Bernoulli beam theory 

for vibration analysis of nanobeams.  

Li et al. [10] considered the free vibration of nonlocal 

Euler and Timoshenko beams. It was provided a novel 

explanation for the stiffening phenomenon of nonlocal 

cantilever beams, clarified the effects of local and nonlocal 

boundary conditions on the free vibration, and revealed the 

effects of different constitutive relations for nonlocal 

Timoshenko beams. Wang et al. [11] concerned with the free 

vibration problem for micro/nanobeams modeled after 

Eringen’s nonlocal elasticity theory and Timoshenko beam 

theory. 

Thai and Vo [12] used a sinusoidal shear deformation 

beam theory which is capable of capturing both small-scale 

effect and transverse shear deformation effects of nanobeams, 

and does not require shear correction factors for the bending, 
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buckling, and vibration of nanobeams. Eltaher et al. [13] used 

an efficient finite element model for dynamic characteristics 

analysis of a nonlocal Euler–Bernoulli nanobeam. Roque et al. 

[14] used the nonlocal elasticity theory of Eringen to study 

bending, buckling, and free vibration of Timoshenko 

nanobeams. A meshless method was presented to obtain 

numerical solutions. 

 

Functionally graded materials (FGMs) are a class of 

engineered materials that are designed to have spatial variations 

in their composition and/or microstructure to achieve specific 

mechanical, thermal, electrical, or other properties. Unlike 

traditional materials, which have uniform properties throughout 

their volume, FGMs exhibit a gradual or abrupt transition in 

their properties along one or more directions [15]. The concept 

of FGM was first developed by Japanese researchers in the 

1980s as materials capable of withstanding the extreme 

temperature changes were encountered in aerospace 

applications but has since found a wide range of applications in 

fields such as aerospace, energy, biomedical engineering, and 

materials science. While FGMs can be designed to exhibit a 

variety of property gradients, such as variations in composition, 

porosity, grain size, and fiber orientation, the composition 

gradient is the most common type of gradient. The composition 

gradient involves a gradual change in the type or concentration 

of one or more constituents of the material as in the example of 

a metal-ceramic FGM which has a gradient in the concentration 

of ceramic particles increasing from one end of the material to 

the other. 

 

Although the design and fabrication of FGMs can be 

challenging and require advanced materials processing 

techniques, they have a wide range of potential application 

areas due to their several advantages over traditional 

homogeneous materials, such as improved fracture resistance, 

reduced stress concentration, and enhanced thermal shock 

resistance. FGM structures which can be designed and 

optimized for specific applications by tailoring their 

composition and properties have a wide range of applications 

such as aircraft and spacecraft components, missile 

components, armor plating, dental implants, prosthetics, bone 

grafts, fuel cells and batteries, heat sinks and heat exchangers, 

bridges, buildings, and other civil engineering structures. 

 

There are many studies in the literature dealing with 

bending, buckling, and free vibration of functionally graded 

beams [16-29]. With this, bending, buckling, and free vibration 

are important mechanical behaviors that need to be analyzed in 

order to design and optimize functionally graded nanobeam 

structures for various nano applications. Eltaher et al. [30] 

presented a free vibration analysis of functionally graded size-

dependent nanobeams using a finite element method based on 

nonlocal Euler-Bernoulli beam theory. Simsek and Yurtcu [31] 

investigated static bending under uniformly distributed load 

and buckling analysis of functionally graded nanobeams based 

on nonlocal Timoshenko beam theory that first-order shear 

deformation theory. Buckling results and vibration results of 

functionally graded nanobeams based on Reddy theory were 

presented by Rahmani and Jandaghian [32] and Ebrahimi and 

Barati [33], respectively. Explicit analytical equations for the 

vibration of a bidirectional functionally graded nonlocal 

nanobeam are presented by Nazmul et al. [34]. 

 

However, it is seen that the effect of Poisson ratio was not 

taken into account in these studies on functionally graded 

nanobeams. However, the Poisson ratio is a measure of the 

deformation of a material in response to an applied force. It is 

defined as the ratio of the lateral strain to the longitudinal strain 

in a material when it is stretched or compressed. In other words, 

it is a measure of how much a material will shrink or expand 

perpendicular to the direction of an applied force. The value of 

Poisson’s ratio is an important factor in determining the 

mechanical behavior of materials under stress, as it affects their 

elastic modulus, shear modulus, and other mechanical 

properties. It becomes even more important to consider the 

effect of Poisson ratio in functionally graded materials where 

mechanical properties such as elastic modulus, density, and 

Poisson ratio vary across thickness. The static bending, the 

buckling, and the free vibration of the functionally graded 

nanobeam with the effect of Poisson's ratio taken into account 

is the subject of this paper. In this study, the generalized shear 

deformation theory with the shape function corresponding to 

the Reddy theory is used based on the nonlocal elasticity theory. 

The material properties of the functionally graded nanobeam 

assumed to vary in the thickness direction. The Navier-type 

solution is used for simply-supported boundary conditions, and 

exact formulas are proposed for the maximum deflections, the 

critical buckling load, and the natural frequencies. The effects 

of the nonlocal parameter ((e0a)2), the material composition (p 

index), and the length-to-thickness ratio (L/h) on the static, the 

stability and free vibration responses of the functionally graded 

nanobeam are discussed. 

2. Theoretical formulations 

2.1 Nonlocal elasticity theory 

According to nonlocal elasticity theory, different from the 

classical elasticity theory, the stress field at a point x in an 

elastic continuum not only depends on the strain field at the 

same point but also on strains at all other points of the body. As 

a result of this, in classical elasticity theory, the behavior of a 

material is described purely in terms of its local properties, such 

as its stiffness and strength. However, in nonlocal elasticity 

theory, the behavior of a material is also affected by the 

material's microstructure, such as the size and shape of its 

particles. Nonlocal elasticity theory introduces a length scale 

parameter known as the nonlocal parameter, which is related to 

the material's microstructure. The presence of this length scale 

parameter causes the stress and strain in a material to be more 

distributed over a larger area, which leads to a reduction in the 

overall stiffness of the material. This effect is particularly 

pronounced in materials with a high surface area-to-volume 

ratio, such as nanomaterials. Therefore, nonlocal elasticity 

theory predicts that the material will be less stiff and less 

resistant to deformation than classical elasticity theory. In other 
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words, the material will exhibit a softer response to external 

loads. 

The nonlocal stress tensor σ at point x is defined as follows: 

σ(x) = ∫ α(|x′ − x|, τ)t(x′)dv(x′)
v

 (1) 

t(x) = C(x): ε(x) (2) 

where t(x՛) is the classical, macroscopic stress tensor at 

point x, α(|x՛-x|,τ) is the Kernel function and τ is the material 

constant which depends on a constant appropriate to each 

material (e0), internal characteristic (a) such as lattice 

parameter, granular distance and external characteristic length 

(l) such as crack length, wavelength. With the reduced and 

simplified differential form of Eq. (1) and using Eq. (2) the 

relationship between classical, macroscopic stress tensor t and 

nonlocal stress tensor σ is given by Laplacian operator 𝛻 as 

follows: 

(1 − τ2l2∇2)σ = C(x): ε(x)                                 τ =
e0a

l
 (3) 

It is seen that when the internal characteristic length a is 

zero, nonlocal elasticity corresponds to classical elasticity. 

2.2 Governing equations of functionally graded nanobeams 

The considered functionally graded nanobeam is a 

straight prismatic beam with length L along the x-axis and 

thickness h along the z-axis. The governing equations in terms 

of reduced stiffness coefficients, including Poisson's ratio 

effects, are as follows: 

(1 − (e0a)2
d2

dx2
)σx = Q11εx  

(1 − (e0a)2
d2

dx2
)τxz = Q55γxz (4) 

Where Qij are the reduced stiffness coefficients defined 

according to FGMs as follows: 

Q11 =
E(z)

1 − ν(z)2
 ,             Q55 =

E(z)

2(1 + ν(z))
   (5)  

 

The displacement model of the beam defined according 

to the generalized shear deformation theory, as the axial 

displacement defined at any point, w1 and the vertical 

displacement w3 are as follows: 

w1 = u(x; t) − z
∂w

∂x
+ f(z)u1(x; t)  

w2 = 0  

w3 = w(x; t) (6) 

where u and w are the displacement components of a point on 

the mid-plane of the beam along the x- and z- axis, respectively. 

And f(z) is the transverse shear shape function which 

determines the distribution of the transverse shear strains and 

stresses throughout the beam thickness. Frequently used shape 

functions and derivatives along with their corresponding 

theories are given in Table 1 and illustrated in Fig.1. 

Table 1. The mostly used transverse shape functions and 

derivatives along with their corresponding theories.  

Shape function  Derivative of shape 

function 

Corresponding 

theory 

𝐟(𝐳) = 𝟎  df

dz
= 0  Euler-Berrnoulli 

beam theory 

(EBT) 

𝐟(𝐳) = 𝐳   df

dz
= 1  Timoshenko beam 

theory (TBT) 

𝐟(𝐳) = 𝐳 (𝟏 −

𝟒𝐳𝟐

𝟑𝐡𝟐
)     

df

dz
= 1 −

4z2

h2
    Reddy beam 

theory (RBT) 

𝐟(𝐳) = 𝐳𝟑
−𝟐(𝐳/𝐡)𝟐

𝐥𝐧𝟑         
df

dz
= 3

−2(z/h)2

ln3 (1 −
4z2

h2
)    

Aydogdu beam 

theory (ABT) 

 

  

Fig 1. Variation of the frequently used (a) transverse shape functions and (b) derivatives along with their corresponding theories 

throughout the thickness coordinate.     
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The strain components in terms of the displacement 

components are as follows:   

εx =
∂u

∂x
− z

∂2w

∂x2
+ f(z)

∂u1

∂x
   

γxz =
df

dz
u1 (7) 

The internal force and moment resultants are as follows:  

(Nx
c, Mx

c) = ∫ σx(1, z)dz
h/2

−h/2

 
 

Mx
sd = ∫ σxf(z)dz

h/2

−h/2

 
 

Qx
sd = ∫ τxz(

df

dz
)dz

h/2

−h/2
   (8) 

The constitutive relations are as follows: 

{

Nx
c

Mx
c

Mx
sd

} = [
A11 B11 E11

B11 D11 F11

E11 F11 H11

] {

u,x
−w,xx

u1 ,x
}  

{Qx
sd} = [A55]{u1} (9) 

The extensional, coupling, bending, and transverse shear 

rigidities are as follows: 

(A11 , B11 , D11) = ∫ Q11(1, z, z2)dz
h/2

−h/2

  

(E11, F11 , H11) = ∫ Q11f(z)(1, z, f(z))dz
h/2

−h/2

  

A55 = ∫ Q55(
df

dz
)2dz

h/2

−h/2

 (10) 

The governing equations of nanobeam obtained using principle 

of virtual work are as follows: 

∂Nx
c

∂x
= (1 − (e0a)2 ∂2

∂x2
) (ρ0

∂2u

∂t2
− ρ1

∂3w

∂x ∂t2
+ ρ01

∂2u1

∂t2
)   

∂2Mx
c

∂x2
= (1 − (e0a)2 ∂2

∂x2
) (ρ0

∂2w

∂t2
+ ρ1

∂3u

∂x ∂t2
−

ρ2
∂4w

∂x2 ∂t2
+ ρ11

∂3u1

∂x ∂t2
− Nx

e ∂2w

∂x2
− q(x; t))  

 

∂Mx
sd

∂x
− Qx

sd = (1 − (e0a)2 ∂2

∂x2
) (ρ01

∂2u

∂t2
− ρ11

∂3w

∂x ∂t2
+

ρ02
∂2u1

∂t2
)  

(11) 

Where inertia terms are as follows: 

ρi = ∫ ρ(z)zidz
h/2

−h/2
                  (i=0,1,2)  

ρjm = ∫ ρ(z)zjfj
mdz

h/2

−h/2
     (j=0,1 ; m=1,2) (12) 

Where ρ is the mass per unit volume. 

2.3.  Functionally graded materials 

The considered structural element is a straight prismatic 

functionally graded nanobeam having length L along the x-axis 

and thickness h along the z-axis. Effective material properties 

elasticity modulus (E), Poisson ratio (υ) and mass density (ρ) 

are varying in the thickness direction according to a simple 

power law distribution defined as follows: 

Peff = VUPU + VLPL  

VU + VL = 1  

VU = (
z

h
+

1

2
)

pz

  

Peff = (
z

h
+

1

2
)

pz

PU + (1 − (
z

h
+

1

2
)

pz

)PL (13) 

where Peff corresponding to the effective material 

property, the subscript U and L corresponding to the material 

property of the upper and lower surface, respectively. In this 

study upper surface material ceramic rich and lower surface 

material metal rich are preferred. Variation of the volume 

fraction VU through the thickness direction of the functionally 

graded nanobeam is given in Fig.2 where VU is the volume 

fraction of the ceramic; and pz is the volume fraction exponent, 

0≤pz≤∞. Different value of the volume fraction of VU 

corresponds to different distribution of material composition on 

functionally graded nanobeam: e.g. if that value is 0, material 

of the nanobeam is ceramic; if that value is 1, the variation of 

the volume fraction of the ceramic is linear from lower surface 

to upper surface. If the ceramic volume ratio is different from 0 

and 1, variation of the material composition is nonlinear. 

 

Fig 2. Variation of the volume fraction VU (ceramic 
component) through the thickness direction of the 
functionally graded nanobeam. 
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2.4 Analytical solution for bending, buckling, and free 

vibration of simply supported functionally graded 

nanobeam 

In this study Navier method is applied for static bending, 

buckling, and free vibration problem of functionally graded 

nanobeam. The sets of boundary conditions of the beam at x=0, 

L are as follows: 

either u or Nx
c = N̅x  

either w or Mx,x
c = Q̅x  

either w_x or Mx
c = M̅x  

either 𝑢1 or Mx
a = M̅x

a  (14) 

where N̅x, Q̅x, M̅x, M̅x
a are corresponding to prescribed force 

and moment resultants acting on the beam boundaries. 

The simply supported boundary conditions of nanobeam are as 

follows: 

Nx
c = w = Mx

c = Mx
a = 0 (15) 

The nanobeam equations given by Eq.(11) are organized 

as the external force (Nxe) term, and time dependent terms are 

zero on bending problem. Similarly the equations are organized 

as the time dependent terms and transverse load (q(x;t)) term 

are zero on buckling problem. Similarly the equations are 

organized as the external force (Nxe) term and transverse load 

(q(x;t)) term are zero on free vibration problem. 

The kinematic components that provide the simply 

supported boundary condition in the bending and buckling 

analysis of the nanobeam examined are as follows: 

u(x) = Amcos
mπx

L
        

w(x) = Cmsin
mπx

L
   

Lu1(x) = Dmcos
mπx

L
 (16) 

where u and w are the displacement components of a point in 

the midplane in the x and z directions; and u1 is the 

displacement components showing effects of vertical shear 

strains in the midplane. For bending analysis, the transverse 

load that provides the simply supported boundary condition is 

defined in the Fourier series form as follows: 

q(x) = ∑ Qmsin
mπx

L
M
m=1      

Qm =
2

L
∫ q(x)sin

mπx

L
dx

L

0

 (17) 

Considered two types of loading that one of uniformly 

distributed load and one of point load condition in bending 

analysis are defined as follows:   

Uniformly distributed load; 

 q(x) = q0 , Qm =
4q0

mπ
(−1)m−1 , (m = 1,3,5, … ),

Qm = 0     (m = 2,4,6, … )  
(18) 

Point load applied to point x0 from x=0 to L: 

q(x) = q0 ,      Qm =
2q0

L
sin

mπx0

L
,     (m = 1,2,3, … ) (19) 

Firstly by substituting of the expansions Eq.(16) and 

Eq.(17) into Eq.(11) and then by applying non-

dimensionalization procedure, max deflection is 

obtained. 

For buckling analysis, the external in-plane uniaxial 

compression load is defined as follows: 

Nx
e = −N0 (20) 

Firstly by substituting of the Eq.(16) and Eq.(20) into 

Eq.(11) and then by applying non-dimensionalization 

procedure critical buckling load is obtained. 

The kinematic components that provide the simply 

supported boundary condition in the free vibration 

analysis of the nanobeam examined in the xz-plane are as 

follows: 

u(x) = Amcos
mπx

L
sinωt  

w(x) = Cmsin
mπx

L
sinωt  

Lu1(x) = Dmcos
mπx

L
sinωt (21) 

Firstly by substituting of the Eq.(21) into Eq.(11) and 

then by applying non-dimensionalization procedure an 

eigenvalue problem in matrix form is obtained as 

follows: 

[Kij − Ω2Mij] {
Am

Cm

Dm

} = {0} (22) 

where Ω is the frequency parameter corresponding to 

ρcω2 and ρc represent mass density of ceramic component of the 

functionally graded material. The solution of the eigenvalue 

problem given by Eq.(22) gives the natural frequencies of the 

nanobeam. 

3. Numerical results 

The static bending, axial buckling, and free vibration 

analyses are carried out for functionally graded nanobeams 

whose material properties vary through the thickness direction 

according to a simple power rule. The solutions are obtained by 

the Navier method and hence for the simply supported 

boundary condition. The material properties considered in this 

study are given in Table 2.    

Non-dimensionalization terms are used in the study as follows: 

Uniformly distributed load; 
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w̅ =
100EcD0

q0L4
w       (D0 =

Ech3

12(1−νc
2)

) (23) 

Table 2. Mechanical properties of component materials of 

functionally graded material which are considered in the study. 

Component 

Material 

Elasticity 

Modulus (GPa) 

Poisson 

Ratio 

Mass Density 

(kg/m3) 

SUS304 

(Metal) 
201.04 0.3262 8166 

Si3N4 

(Ceramic) 
348.43 0.2400 2370 

 

Point load applied to point x0 from x=0 to L: 

 w̅ =
D0

q0L3
w (24) 

 

Critical buckling load: 

N̅ =
N0L2

D0
 

(25) 

 

Natural frequency parameter: 

Δ = ωL2√
ρc

D0
 (26) 

  

The thickness (h) of functionally graded nanobeam is 1 

nm. Effects of the nonlocal parameter ((e0a)2), different 

material composition (pz) and the beam geometry (length-to-

thickness) on the bending, buckling, and vibration are 

investigated.  

  

The comparison results for bending, buckling, and 

vibration are given in Table 3-7. The results obtained in this 

study are quite self-consistent among themselves. In addition, 

although a good agreement is observed in the comparison 

results, it is also seen that there are some differences between 

them. Although both of the generalized shear deformation 

theory and the Reddy theory are higher-order beam theories that 

take into account the effect of transverse shear deformation, 

which is neglected in classical beam theories. In this study, in-

plane displacement components are also taken into account, 

leading to some differences between the results. However, the 

effect of Poisson's ratio on the mechanical behavior of beams is 

particularly significant in cases where the beam is subjected to 

out-of-plane deformation such as bending. In such cases, the 

beam experiences both tensile and compressive stresses along 

its length, as well as shear stresses across its cross-section. 

Poisson's ratio plays a crucial role in determining the 

deformation of the beam under these complex loading 

conditions. As it is seen in comparison results, considering the 

Poisson ratio in case of axial stress also affects the results. 

Because when the effect of Poisson's ratio is taken into account, 

the material exhibits a more rigid behavior. As a result, in the 

results obtained by considering the Poisson ratio, the bending 

deformation takes smaller values, while the critical buckling 

load and natural frequencies take larger values. 

Table 3. Comparison of non-dimensional maximum center 

deflection of nanobeam under uniformly distributed load, 

(υ=0.3, w̅ =
100EI

q0L4
w, q0=1 ). 

(e0a)2 L/h=10 L/h=100 

Ref. 

[5] 

Present 

(without 

ν) 

Present 

(with ν) 
Ref. [5] 

Present 

(without 

ν) 

Present 

(with ν) 

0 1.3346 1.3059 1.1913 1.3024 1.2735 1.1589 

1 1.4622 1.4347 1.3088 1.4274 1.3992 1.2733 

2 1.5898 1.5636 1.4264 1.5525 1.5249 1.3877 

3 1.7174 1.6925 1.5440 1.6775 1.6506 1.5021 

4 1.8450 1.8214 1.6616 1.8025 1.7763 1.6165 

 

 

Table 4. Comparison of non-dimensional maximum center 

deflection of nanobeam under point load at center, (υ=0.3, w̅ =
100EI

q0L3
w, q0=1). 

 

Table 5. Comparison of non-dimensional critical buckling load 

under uniaxial compression load, (υ=0.3, N̅ =
N0L2

EI
 ). 

(e0a)2 

L/h=10 L/h=100 

Ref. [4]  Present 

(without ν) 

Present 

(with ν) 

Ref. [4]  Present 

(without ν) 

Present 

(with ν) 

0 9.6228 9.6226 10.5483 9.8671 9.8670 10.8425 

1 8.7583 8.7582 9.6007 8.9807 8.9806 9.8686 

2 8.0364 8.0363 8.8093 8.2405 8.2404 9.0551 

3 7.4245 7.4244 8.1385 7.6130 7.6129 8.3656 

4 6.8991 6.8990 7.5626 7.0743 7.0742 7.7736 

Table 6. Comparison of non-dimensional fundamental 

frequencies, (υ=0.3, Δ = ωL2√
ρ

EI
). 

(e0a)2 

L/h=10 L/h=100 

Ref. [5]  
Present 

(without ν) 

Present 

(with ν) 
Ref. [5]  

Present 

(without ν) 

Present 

(with ν) 

0 9.7075 9.7071 10.1634 9.8679 9.8679 10.3442 

1 9.2612 9.2608 9.6961 9.4143 9.4142 9.8687 

2 8.8714 8.8709 9.2879 9.0180 9.0179 9.4532 

3 8.5269 8.5265 8.9273 8.6678 8.6677 9.0861 

4 8.2197 8.2193 8.6057 8.3555 8.3554 8.7588 

(e0a)2 

L/h=10 L/h=100 

Ref. 

[4] 

Present 

(without ν) 

Present 

(with ν) 
Ref. [4] 

Present 

(without ν) 

Present 

(with ν) 

0 1.9878 2.0513 1.8713 1.9449 2.0005 1.8205 

1 2.1564 2.2537 2.0560 2.1115 2.1979 2.0002 

2 2.3250 2.4562 2.2406 2.2782 2.3954 2.1798 

3 2.4936 2.6586 2.4253 2.4448 2.5928 2.3595 

4 2.6623 2.8611 2.6100 2.6115 2.7903 2.5392 
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Table 7. Comparison of first three non-dimensional 

fundamental frequencies, (L/h=5, υ=0.3,           Δ = ωL2√
ρ

EI
). 

Modes (e0a)2 Ref. [5] 

Present 

(without 

ν) 

Present 

(with ν) 

1 0 9.2745 9.2690 9.6740 

 1 8.8482 8.8429 9.2293 

 2 8.4757 8.4706 8.8407 

 3 8.1466 8.1417 8.4975 

 4 7.8530 7.8484 8.1913 

     

2 0 32.1847 31.9441 33.0538 

 1 27.2519 27.0481 27.9878 

 2 24.0589 23.8790 24.7086 

 3 21.7765 21.6137 22.3646 

 4 20.0407 19.8908 20.5818 

     

3 0 61.5746 59.8105 61.3641 

 1 44.8095 43.5257 44.6563 

 2 36.9531 35.8943 36.8267 

 3 32.1645 31.2430 32.0545 

 4 28.8569 28.0301 28.7582 

Table 8 and Table 9 show that the results of bending 

analysis of functionally graded nanobeam under uniformly 

distributed load and point load respectively. In all considered 

conditions in terms of material composition or geometry, 

maximum deflection increased with increasing nonlocal 

parameter value. This result confirms the nonlocal elasticity 

behavior of the considered material. The volume ratio exponent 

pz determines the rate of change of the ceramic volume fraction 

from the lower surface to the upper surface; and as the pz value 

increases, the ceramic volume ratio decreases, and the metal 

volume ratio increases. As a result, it can be said that the 

maximum deflection increases with increasing pz value and 

therefore with increasing metal volume ratio. From the 

geometric point of view, the maximum deflection value 

decreases with the increase of L/h value; that is, the decrease in 

nanobeam thickness, in both loading conditions. However, in 

terms of all parameters examined, the beam with at least L/h=50 

ratio is affected by all variation amounts. 

According to the buckling results given in Table 10, the 

critical buckling load decreases as the pz value and the nonlocal 

parameter value increase, so the material becomes softer. And, 

as the value of L/h increases, it increases; that is, the strength of 

the material against buckling increases. 

The free vibration results for first three natural 

frequencies are presented in Table 11-Table 13. The natural 

frequencies decrease as the pz value and the nonlocal parameter 

value increase, but increase as the L/h value increases, similar 

to the buckling results. However, unlike the buckling results, 

vibration frequencies are less affected by the change of 

parameters. It can be thought that the reason for this is not an 

applied external force. 

 

Table 8. Non-dimensional maximum center deflection under uniformly distributed load. 

L/h (e0a)2 
Volume fraction exponent pz 

0 0.2 0.5 1 2 5 10 

10 

0 1.3063 1.4217 1.5418 1.6552 1.7496 1.8455 1.9260 

1 1.4352 1.5620 1.6940 1.8186 1.9223 2.0276 2.1160 

2 1.5641 1.7023 1.8461 1.9820 2.0949 2.2098 2.3061 

3 1.6930 1.8427 1.9983 2.1453 2.2676 2.3919 2.4962 

4 1.8220 1.9830 2.1505 2.3087 2.4403 2.5741 2.6863 

         

20 

0 1.2815 1.3949 1.5126 1.6227 1.7126 1.8031 1.8816 

1 1.4079 1.5326 1.6619 1.7829 1.8816 1.9810 2.0673 

2 1.5344 1.6703 1.8111 1.9431 2.0507 2.1590 2.2530 

3 1.6609 1.8080 1.9604 2.1032 2.2197 2.3370 2.4387 

4 1.7874 1.9457 2.1097 2.2634 2.3887 2.5149 2.6244 

         

50 

0 1.2745 1.3875 1.5044 1.6136 1.7023 1.7912 1.8691 

1 1.4003 1.5244 1.6529 1.7729 1.8703 1.9680 2.0536 

2 1.5261 1.6613 1.8013 1.9322 2.0383 2.1448 2.2381 

3 1.6519 1.7983 1.9498 2.0914 2.2063 2.3216 2.4226 

4 1.7777 1.9352 2.0983 2.2507 2.3743 2.4983 2.6070 



Bending, buckling and vibration of functionally graded nanobeams Journal of Balkan Science and Technology 2023: 2(1): 37-47 
 

44 

Table 9. Non-dimensional maximum deflection under point load at center. 

 

Table 10. Non-dimensional critical buckling load under uniaxial compression load. 

 

L/h (e0a)2 
Volume fraction exponent pz 

0 0.2 0.5 1 2 5 10 

10 

0 2.0519 2.2332 2.4219 2.6001 2.7482 2.8989 3.0253 

1 2.2544 2.4536 2.6609 2.8567 3.0195 3.1850 3.3239 

2 2.4569 2.6740 2.8999 3.1133 3.2907 3.4712 3.6225 

3 2.6594 2.8945 3.1390 3.3699 3.5620 3.7573 3.9211 

4 2.8620 3.1149 3.3780 3.6265 3.8332 4.0434 4.2197 

         

20 

0 2.0129 2.1912 2.3760 2.5490 2.6902 2.8323 2.9556 

1 2.2116 2.4075 2.6105 2.8006 2.9557 3.1118 3.2473 

2 2.4103 2.6237 2.8450 3.0522 3.2212 3.3914 3.5390 

3 2.6090 2.8400 3.0795 3.3038 3.4867 3.6709 3.8307 

4 2.8076 3.0563 3.3140 3.5553 3.7523 3.9505 4.1224 

         

50 

0 2.0020 2.1794 2.3631 2.5347 2.6739 2.8136 2.9360 

1 2.1996 2.3945 2.5963 2.7849 2.9378 3.0913 3.2258 

2 2.3972 2.6096 2.8296 3.0351 3.2018 3.3690 3.5156 

3 2.5948 2.8247 3.0628 3.2852 3.4657 3.6467 3.8054 

4 2.7924 3.0399 3.2960 3.5354 3.7296 3.9244 4.0952 

L/h (e0a)2 
Volume fraction exponent pz 

0 0.2 0.5 1 2 5 10 

10 

0 9.6197 8.8387 8.1502 7.5916 7.1823 6.8090 6.5245 

1 8.7556 8.0447 7.4180 6.9097 6.5371 6.1973 5.9384 

2 8.0339 7.3816 6.8066 6.3401 5.9983 5.6865 5.4489 

3 7.4221 6.8195 6.2883 5.8573 5.5415 5.2535 5.0340 

4 6.8969 6.3369 5.8433 5.4429 5.1494 4.8817 4.6778 

         

20 

0 9.8058 9.0081 8.3076 7.7436 7.3373 6.9692 6.6785 

1 8.9250 8.1989 7.5614 7.0480 6.6782 6.3431 6.0785 

2 98.1893 7.5231 6.9381 6.4671 6.1277 5.8203 5.5775 

3 7.5657 6.9502 6.4098 5.9746 5.6611 5.3771 5.1528 

4 7.0303 6.4584 5.9562 5.5518 5.2605 4.9966 4.7872 

         

50 

0 9.8593 9.0568 8.3528 7.7873 7.3819 7.0154 6.7229 

1 8.9736 8.2432 7.6025 7.0878 6.7188 6.3852 6.1190 

2 8.2339 7.5638 6.9758 6.5036 6.1650 5.8589 5.6146 

3 7.6069 6.9878 6.4446 6.0083 5.6955 5.4127 5.1871 

4 7.0686 6.4933 5.9886 5.5832 5.2925 5.0297 4.8200 
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Table 11. Non-dimensional fundamental natural frequency parameter. 

Table 12. Non-dimensional second natural frequency parameter. 

4. Conclusion 

The aim of the study is to show that the nonlocal theory 

of elasticity is an effective tool for predicting the mechanical 

behavior of functionally graded nanobeams. The incorporation 

of nonlocal effects into models of bending, buckling, and 

vibration can provide valuable insights into the behavior of 

these structures and can aid in the design of advanced 

nanomaterials and devices. The material properties of 

functionally graded nanobeam were considered varying 

according to simple power law along the thickness direction. 

Effect of the nonlocal parameter ((e0a)2), variation of volume 

fraction exponent (pz), and the geometrical parameters of 

nanobeam (length -to-thickness) on the bending under 

two types of loading conditions, buckling under uniaxial 

compression   loading   condition   and   free   vibration   were

L/h (e0a)2 
Volume fraction exponent pz 

0 0.2 0.5 1 2 5 10 

10 

0 9.7056 7.8369 6.6273 5.7806 5.1701 4.6857 4.4533 

1 9.2594 7.4766 6.3227 5.5149 4.9324 4.4703 4.2486 

2 8.8696 7.1618 6.0565 5.2827 4.7247 4.2821 4.0697 

3 8.5252 6.8837 5.8213 5.0776 4.5413 4.1158 3.9117 

4 8.2181 6.6357 5.6116 4.8947 4.3777 3.9675 3.7707 

         

20 

0 9.8277 7.9370 6.7131 5.8571 5.2414 4.7536 4.5178 

1 9.3759 7.5721 6.4045 5.5878 5.0004 4.5351 4.3101 

2 8.9811 7.2533 6.1348 5.3526 4.7899 4.3442 4.1286 

3 8.6324 6.9717 5.8966 5.1448 4.6039 4.1755 3.9683 

4 8.3214 6.7205 5.6842 4.9594 4.4380 4.0250 3.8253 

         

50 

0 9.8628 7.9658 6.7378 5.8791 5.2620 4.7732 4.5364 

1 9.4094 7.5996 6.4280 5.6089 5.0201 4.5538 4.3279 

2 9.0133 7.2797 6.1574 5.3727 4.8087 4.3621 4.1457 

3 8.6633 6.9970 5.9183 5.1641 4.6220 4.1927 3.9847 

4 8.3511 6.7449 5.7051 4.9781 4.4555 4.0416 3.8411 

L/h (e0a)2 
Volume fraction exponent pz 

0 0.2 0.5 1 2 5 10 

10 

0 37.0562 29.9004 25.2717 22.0217 19.6578 17.7734 16.8925 

1 31.3767 25.3177 21.3984 18.6465 16.6449 15.0493 14.3034 

2 27.7004 22.3513 18.8912 16.4618 14.6947 13.2861 12.6276 

3 25.0726 20.2309 17.0991 14.9001 13.3007 12.0257 11.4296 

4 23.0740 18.6183 15.7361 13.7124 12.2405 11.0671 10.5186 

         

20 

0 38.8226 31.3476 26.5095 23.1227 20.6804 18.7430 17.8133 

1 32.8724 26.5431 22.4464 19.5788 17.5108 15.8703 15.0831 

2 29.0208 23.4331 19.8165 17.2848 15.4591 14.0108 13.3159 

3 26.2677 21.2101 17.9366 15.6451 13.9926 12.6817 12.0526 

4 24.1739 19.5194 16.5068 14.3980 12.8772 11.6708 11.0919 

         

50 

0 39.3708 31.7973 26.8946 23.4662 21.0008 19.0481 18.1030 

1 33.3365 26.9238 22.7726 19.8696 17.7821 16.1286 15.3284 

2 29.4307 23.7692 20.1044 17.5416 15.6986 14.2389 13.5325 

3 26.6387 21.5143 18.1972 15.8775 14.2094 12.8881 12.2487 

4 24.5153 19.7994 16.7466 14.6119 13.0767 11.8608 11.2723 
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Table 13. Non-dimensional third natural frequency parameter. 

L/h (e0a)2 Volume fraction exponent pz 

0 0.2 0.5 1 2 5 10 

10 0 77.8803 62.7809 53.0270 46.1532 41.0983 37.0424 35.2069 

1 56.6756 45.6874 38.5891 33.5869 29.9083 29.9567 25.6210 

2 46.7387 37.6770 31.8233 27.6981 24.6645 22.2304 21.1289 

3 40.6820 32.7946 27.6995 24.1088 21.4683 19.3497 18.3909 

4 36.4986 29.4222 24.8510 21.6297 19.2607 17.3599 16.4997 

         

20 0 85.6191 69.1127 58.4315 50.9444 45.5245 41.2156 39.1720 

1 62.3073 50.2952 42.5222 37.0736 33.1294 29.9937 28.5065 

2 51.3830 41.4769 35.0668 30.5735 27.3208 24.7349 23.5085 

3 44.7245 36.1021 30.5226 26.6116 23.7804 21.5296 20.4621 

4 40.1253 32.3896 27.3839 23.8750 21.3350 19.3157 18.3579 

         

50 0 88.2852 71.2985 60.3027 52.6114 47.0768 42.6913 40.5734 

1 64.2475 51.8858 43.8839 38.2868 34.2590 31.0676 29.5263 

2 52.9830 42.7887 36.1897 31.5739 28.2524 25.6205 24.3495 

3 46.1172 37.2439 31.5001 27.4824 24.5913 22.3005 21.1942 

4 41.3748 33.4140 28.2608 24.6563 22.0625 20.0073 19.0147 

researched. The results show that this study is worthy of 

conduct, and especially in cases where the L/h value is below 

50, the nonlocal parameter and the material volume fraction 

affect all the results more. 
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