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Explicit algebraic classification of vacuum, shearfree and non-twisting spacetimes at
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Most general, shearfree and twistfree geometry is revisited and its Weyl scalars are obtained with large D limit. It is
shown that, the spacetime is Type I(b) or more special in this limit like the classification of any arbitrary dimesion
D > 4. As an example, classification of vacuum RT spacetime is investigated. As expected, the spacetime becomes
algebraically special and it is Type II or more special. Obligatory conditions are determined for other types and
sub-types as the dimension of the spacetime D → ∞.

1. Introduction
After Robinson-Trautman (RT) solution in 4-dimensions [1,

2] was obtained, the results which enable to understand blackhole
physics, theory of gravitational waves and cosmology were
commonly studied. As the spacetime geometrically defines a
shear-free, twist-free and expanding congruence of null geodesics,
it involves many well-known solutions i.e. Schwarzchild,
Reissner–Nordstrom, Schwarzchild–de Sitter, Vaidya, C-metric.
So, the RT spacetime in 4 dimensions has include various
algebraically special Petrov-Penrose types which are analyzed in
[3, 4].

RT solutions in empty space generalized to higher dimensions
in [5], but surprisingly higher dimensional results does not
include as many as solutions like D = 4. Additionally,
aligned electromagnetic fields within Einstein-Maxwell theory
[6] and general p-form Maxwell fields [7] were associated
with higher dimensional RT spacetime to analyze richness of
it. After a classification scheme for the Weyl tensor of higher
dimensional spaces with Lorentzian signature was put forward [8,
9] (developments and applications of the classification of the Weyl
tensor in higher dimensional Lorentzian geometries is reviewed
in [10]), classification of higher dimensional RT spacetime was
explicitly analyzed [11].

On the other hand, Emparan and et al improved a new
perspective to higher dimensional solutions with large D expansion
method [12–22]. More concretely, the limit D → ∞ results
in a convenient simplification of the equations and possibly also
a novel reformulation of the dynamics [23]. Although algebraic
classification of RT is studied [24] as the dimension of the
spacetime D → ∞, algebraically special Petrov types and
subtypes of vacuum RT spacetime are discussed for the first time.

The paper is organized as; Section 2 we revisit higher
dimensional shear-free, non-twisting and expanding metric and its
Weyl scalars. By defining boost weight and vanishing Weyl scalars
the algebraic classification of the general metric is summarized.
Main purpose of the paper is studied in Section 3. Algebraic

classification of the vacuum RT spacetime for primary and
secondary WANDs are investigated with obligatory conditions.

2. Algebraic structure of the Weyl tensor at large D
D dimensional most general, shear-free, twist-free metric can

be written in the form [5];

ds2 = gpq (u, r, x) dx
pdxq + 2gup (u, r, x) dudx

p − 2dudr

+guu (u, r, x) du2 (1)

where latin indices p, q, ... count to 2 to (D − 1) and x is
shorthand of these D− 1 spatial coordinates on the traverse space.
Non-twisting structure of the spacetime causes a null foliation
by null hypersurfaces u =const. which ensures to define the
coordinate u. Equivalently, a non-twisting null vector field k that
is everywhere tangent (and normal) to u =const. can be defined.
So, the affine parameter r along a null geodesic congruence
generated by k is determined as the second coordinate which
gives k = ∂r . The relations between covariant and contravariant
metric components of the metric 1 become; gur = −1, grp =
gpqguq, g

rr = −guu + gpqgupguq . In addition, the traverse
space metric can be introduced as gpq = R2(u, r, x)hpq(u, x)
where R = exp

(∫
Θ(u, r, x)dr

)
and Θ is corresponding to the

expansion. Although Θ = 0 (non-expanding case) corresponding
Kundt spacetime, we will analyze expanding case that is RT
spacetime.

The most natural null frames for the metric (1) can be written
in the form;

k = ∂r, ℓ =
1

2
guu∂r + ∂u, mi = mp

i (gup∂r + ∂p) , (2)

where they satisfy the normalization conditions; k.ℓ = −1,
mi.mj = δij . By rescaling of these null frames k → λk,
ℓ → λ−1ℓ and mi → mi, boosts are obtained. One summarizes
the boost weight of the null basis +1,−1, 0, respectively [25].
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Weyl scalar components of the metric (1) for the null frame
can be obtained with large D expansion as;

Ψ0ij = Cabcdk
amb

ik
cmd

j = mp
im

q
jCrprq = 0, (3)

Ψ1T i = Cabcdk
aℓbkcmd

i = mp
iCrurp

= mp
i

[(
−1

2
gup,r +Θgup

)
,r

+Θ,p

]
, (4)

Ψ1ijk = Cabcdk
amb

im
c
jm

d
k = mp

, m
q
jm

m
k Cprmq = 0, (5)

Ψ2S = Cabcdk
aℓbℓckd = Cruur

=

(
1

2
guu,r −Θguu

)
,r

− 1

4
gpqgup,rguq,r − 2Θ,u

+Θgrpgup,r −Θ2grpgup, (6)

Ψ2T ij = Cabcdk
amb

iℓ
cmd

j = mp
im

q
j

(
Crpuq + gupCrqur

+
1

2
guuCrprq

)
= mp

im
q
j

(
1

2
gupguq,rr +

1

4
gup,rguq,r +

1

2
gpng

msgus,r
sΓn

mq

+
1

2
gpn (gnmgum,r),q

+gupguq
(
Θ2 −Θ,r

)
− 2gupΘ,q −Θ(2Eqp − guqgup,r)

)
,(7)

Ψ2ijkl = Cabcdm
a
i m

b
jm

c
km

d
l = mp

im
q
jm

n
km

m
l

(
Cpqmn

+gupCrqmn + guqCprmn + gumCpqrn

+gunCpqmr

)
= mp

im
q
jm

n
km

m
l Cpqnm, (8)

Ψ2ij = Cabcdk
aℓbmc

im
d
j = mp

im
q
j

(
Crupq + guqCrurp

+gupCruqr

)
= mp

im
q
j

(
gu[p,q]r − 4gu[pΘ,q]

+gu[pgq]u,rr +Θ
(
2gu[qgp]u,r + Eqm − Epn

))
, (9)

Ψ3T i = Cabcdℓ
akbℓcmd

i = mp
i

(1
2
guuCurrp

+gupCurur + Curup

)
= mp

i

(
1

4
guugup,rr

−gu[u,p]r + gupΘ,u +
1

2
guuΘ,p − 1

2
guugupΘ,r

+
1

2
gmngum,rEnp − gup

(1
2
guu,r −Θguu

)
,r

−Θ

2
(grrgup,r + guu,p + 2grsEsp)

)
, (10)

Ψ3ijk = Cabcdℓ
amb

im
c
jm

d
k = mp

im
q
jm

m
k

(
1

2
guu

(
Crpqm

+guqCrprm + gumCrpqr

)
+ gup

(
Curqm

+guqCurrm + gumCurqr

)
+ guqCuprm + gumCupqr

+Cupqm

)
= mp

im
q
jm

m
k

(
− 2gupgu[q,m]r

−Θgup (Emn − Eqs) + gupgu[qgm]u,rr + gupgu[qgm]u,r

+gℓsgus,r
sΓn

ℓpgu[qgm]n +
1

2
gup,rgu[qgm]u,r

+gu[qgm]n

(
gnℓguℓ,r

)
,p
− 4ΘEp[mgq]u

−gpn
(
grngu[m,r

)
,q]

− Ep[mgq]u,r − 2gpn
(
gnsEs[q

)
,m]

−gpng
rs sΓn

s[qgm]u,r

−2gpng
skEk[q

sΓn
m]s − 2Θ2grrgp[qgm]u

)
, (11)

Ψ4ij = Cabcdℓ
amb

iℓ
cmd

j = mp
im

q
j

(
guu
2

(
Crpuq + Cuprq

+
guu
2

Crprq + guqCrpur + gupCurrq

)
+gup (Curuq + guqCurur) + guqCupur + Cupuq

)
= mp

im
q
j

(
− guqgu[u,p]r

+
guu
2

(
gmsgus,r

sΓn
m(pgq)n + (gnmgum,r),(p gq)n

−4ΘE(pq)

)
+ gmngum,rEn(pgq)u − grm

2
gum,rgu(pgq)u,r

+gupguq

(
1

2
gpqgup,rguq,r +Θguu,r

)
−gpn

(
−

sΓn
sq

2
(grsguu,r + 2gsmEum) +

(
grngu[u,r

)
,q]

−2
(
gnmEm[q

)
,u]

)
+Θ

(
guu

(
gu(pgq)u,r + grrgpq,r

)
−Eu(pgq)u − grrgu(pgq)u,r − 2guu,(pgq)u

)
−Θ2guu (gupguq + grrgpq)

)
, (12)

where Epq = gu[p,q] +
1
2
gpq,u, and Eup = gu[p,u] +

1
2
gup,u.

Christoffel symbols, Riemann and Ricci tensors, Ricci scalar and
Weyl tensor of the metric (1) are shown in Appendix of our
previous work [24] as the dimension of the spacetime D → ∞.
Irreducible components of the Weyl scalars stay same at large D
limit and the symmetric part of the Ψ2T ij becomes;

Ψ2T (ij) = mp
im

q
j

(1
2
gpng

msgus,r
sΓn

mq +
1

4
gup,rguq,r

+
1

2
gpn (gnmgum,r),q + gupguq

(
Θ2 −Θ,r

)
−4gu(pΘ,q) +Θgu(qgp)u,r + gu(pgq)u,rr

)
. (13)

Automatically, since the Ψ0ij and Ψ1ijk vanish RT spacetime is
classified Type I(b). But it does not algebraically special while
the all boost weight of +1 does not vanish. Spacetime will be
algebraically special and Type II (equivalently Type I(a)) when the
Ψ1T i = 0. In addition, vanishing components of the Weyl scalar
and corresponding types and subtypes of the RT spacetime for the
primary and secondary WANDs k, ℓ are summarized at the Table
1.

3. Analysis of vacuum Robinson-Trautman spacetime

Most general vacuum, shear-free, non-twisting metric as the
dimension of the spacetime D → ∞ can be written;

ds2 = r2hpq(u, x)dx
pdxq + r2dp(u, x)dp(u, x)du

2

+ 2r2dp(u, x)dudx
p − 2dudr (14)

where the expansion Θ = 1
r

and the components of the metric
gpq = r2hpq(u, x), grr = 0, gup = r2dp, grp = dp.
General form of the metric component grr is given equation 100
in [11]. Interestingly, it vanishes with large D limitation. As a
result, our metric does not include the cosmological constant and
pure radiation terms. Since the component of Weyl scalar Ψ1T i

becomes zero, the spacetime is obtained algebraically special and
Type II and more special. Non-zero components of the Weyl
scalars can be written;

Ψ2S = dpdp, (15)

Ψ2T (ij) = mp
im

q
j

[
hpnr

[
hmsds

sΓn
mq + (hnmdm),q

]
58
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Types Vanishing
Weyl Scalar

I Ψ0ij

I(a) Ψ0ij , Ψ1T i

I(b) Ψ0ij , Ψ1ijk

II Ψ0ij , Ψ1T i , Ψ1ijk

II(a) Ψ0ij , Ψ1T i , Ψ1ijk , Ψ2S

II(b) Ψ0ij , Ψ1T i , Ψ1ijk , Ψ2T (ij)

II(c) Ψ0ij , Ψ1T i , Ψ1ijk , Ψ2ijkℓ

II(d) Ψ0ij , Ψ1T i , Ψ1ijk , Ψ2ij

III Ψ0ij , Ψ1T i , Ψ1ijk ,Ψ2S , Ψ2T (ij) , Ψ2ijkℓ , Ψ2ij

III(a) Ψ0ij , Ψ1T i , Ψ1ijk ,Ψ2S , Ψ2T (ij) , Ψ2ijkℓ , Ψ2ij ,
Ψ3T i

III(b) Ψ0ij , Ψ1T i , Ψ1ijk , Ψ2S , Ψ2T (ij) , Ψ2ijkℓ , Ψ2ij ,
Ψ3ijk

N Ψ0ij , Ψ1T i , Ψ1ijk ,Ψ2S , Ψ2T (ij) , Ψ2ijkℓ , Ψ2ij ,
Ψ3T i , Ψ3ijk

O Ψ0ij , Ψ1T i , Ψ1ijk ,Ψ2S , Ψ2T (ij) , Ψ2ijkℓ , Ψ2ij ,
Ψ3T i , Ψ3ijk ,Ψ4ij

Ii Ψ0ij , Ψ4ij

IIi Ψ0ij , Ψ1T i , Ψ1ijk , Ψ4ij

IIIi Ψ0ij , Ψ1T i , Ψ1ijk ,Ψ2S , Ψ2T (ij) , Ψ2ijkℓ , Ψ2ij ,,
Ψ4ij

D Ψ0ij , Ψ1T i , Ψ1ijk , Ψ3T i , Ψ3ijk ,Ψ4ij

Table 1. Algebraic classification of the RT geometry for the
primary and secondary WANDs k, ℓ [11].

+7r2dpdq

]
, (16)

Ψ2ijkℓ = mp
im

q
jm

n
km

m
l C̃pqnm, (17)

Ψ2ij = mp
im

q
j

[
2rd[p,q] +

1

r
(Eqm − Epn)

]
, (18)

Ψ3T i = mp
i

[
rdtd

tdp,u − 3r

2

(
dtd

t)
,p
− ds

r
Esp

+
1

r
dmhmnEnp + r2dpdtd

t

]
, (19)

Ψ3ijk = mp
im

q
jm

n
k

[
− 4r3dpd[q,m] − rdp (Emn − Eqs)

−2r3d[qhm]n

(
hℓsds

sΓn
ℓp − dn,p

)
−6rEp[mdq] − 2r3hpn

[(
dnd[m

)
,q]

+ ds sΓn
s[qdm]

]
−2hpn

[(
hnsEs[q

)
,m]

+ hskEk[q
sΓn

m]s

] ]
, (20)

Ψ4ij = mp
im

q
j

[
− r3

(
2dq

(
dtd

t)
,p
− dqdp,u

)
+4dtd

t(r3hmsds
sΓn

m(phq)n + r3 (hnmdm),(p hq)n

−E(pq)

)
+ 2hmndmEn(pdq) − 8r4dpdpdqdm

+r4dpdq
(
2hpqdpdq + 5dtd

t)
−r2hpn

[
− sΓn

sq

(
rdsdtd

t +
hsm

r2
Eum

)
+r

[(
dndtd

t)
,q
− (dndq),u

]
− 2

r2
(
hnmEm[q

)
,u]

]
−rEu(pdq) − r3dp

(
dtdt

)
,q

]
, (21)

where Epq = r2
(
d[p,q] +

1
2
hpq,u

)
, Eup = r2dp,u −

r2
(
dtdt

)
,p

and sΓn
pq = 1

2
hnt (hpt,q + hqt,p − hpq,t) and

C̃pqnm corresponding Weyl tensor of traverse space. Weyl
tensors are became more simpler than the results of any arbitrary
dimensions D > 4 [11, 26].

Then, we can easily determine the obligatory conditions for
types and sub-types of the vacuum RT solution by using Table 1.

• Vacuum RT solution will be sub-type Type II(a) if the Weyl
scalar Ψ2S = 0, which yields;

dpd
p = 0. (22)

• Vacuum RT solution will be sub-type Type II(b) if the Weyl
scalar Ψ2T (ij) = 0 which gives;

dn,q = −dm sΓn
mq and dpdq = 0. (23)

• Vacuum RT solution will be sub-type Type II(c) if the Weyl
scalar Ψ2ijkℓ = 0, which yields;

C̃pqnm = 0. (24)

• Vacuum RT solution will be sub-type Type II(d) if the Weyl
scalar Ψ2ij = 0, which yields;

d[p,q] =
1

2r2
(Epn − Eqm) . (25)

• Vacuum RT solution will be Type III (equivalently sub-type
Type II(abcd)) if the above Weyl scalars vanish and equations
(22)-(25) are satisfied simultaneously. Additionally, the
spacetime becomes Type III(a) because the Weyl scalar Ψ3T i

is obtained zero with these conditions.

• Vacuum RT solution will be sub-type Type III(b) and Type N
if the Weyl scalar Ψ3ijk = 0, which yields;

d[qhm]n = 0, Ep[mdq] = 0,(
hnsEs[q

)
,m]

= −hskEk[q
sΓn

m]s. (26)

• Vacuum RT solution will be Type O if all above conditions
are satisfied with the Weyl scalar Ψ4ij = 0, which yields;

dqdp,u = 0, Eu(pdq) = 0,(
hnmEm[q

)
,u]

= −hsmEum
sΓn

sq. (27)

Final condition requires the coefficient of dp independent of
the parameter u (dp(u, x) → dp(x)).

The algebraic classification of vacuum RT geometry and
obligatory conditions are summarized at Table 2 for primary
WAND k. Various combinations of sub-types can be obtained
by using the neccassary conditions such as Type II(ad) occur if
equations (22) and (25) are satisfied simultaneously.

The secondary alignment Types Ii and IIi arise when the
equation (21) vanishes which yields Ar4 + Br3 − Cr + D = 0
where

A = −8dpdpdqdm + dpdq(2h
pqdpdq + 5dtdt) (28)

B = −(2dq(d
tdt),p − dpdp,u) + 4dtd

thmsds
sΓn

m(phq)n

+(hmndm),(phq)n + hpnd
sdtd

t sΓn
sq + (dndtd

t),q

−(dndq),u − dp(d
tdt),q (29)

C = Eu(pdq) (30)

D = hpnh
smEum

sΓn
sq + 2hpn(h

nmEm[q),u]. (31)

In addition, if the equations (22-25) are satisfied with dp(u, x) →
dp(x), the spacetime becomes Type IIIi for the secondary WAND
ℓ.
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Types Obligatory
Conditions

I always
I(a) always
I(b) always
II always

II(a) dpd
p = 0

II(b) dn,q = −dm sΓn
mq and dpdq = 0

II(c) C̃pqnm = 0
II(d) d[p,q] =

1
2r2 (Epn − Eqm)

III all above conditions
III(a) all above conditions

III(b) and N all above conditions ,
d[qhm]n = 0, Ep[mdq] = 0,(
hnsEs[q

)
,m]

= −hskEk[q
sΓn

m]s

O all above conditions ,
dp,u = 0 ↔ dp(u, x) → dp(x)

Ii and IIi A = B = C = D = 0
dpd

p = 0, dn,q = −dm sΓn
mq and dpdq = 0

IIIi C̃pqnm = 0, d[p,q] = 1
2r2 (Epn − Eqm)

dp,u = 0 ↔ dp(u, x) → dp(x)

Table 2. Algebraic classification of the vacuum RT spacetime with
obligatory conditions for the primary and secondary WAND k and
ℓ.

4. Conclusion
We revisited the most general Robinson Trautman metric in

higher dimensions. By defining the most natural null frames,
components of Weyl scalar were given at large D. Because
Ψ0ij and Ψ1ijk vanished, RT spacetime is Type I(b) or more
special. Additionally, vanishing components of Weyl scalar are
shown at Table 1 to identify types and sub-types of the RT
geometry. In addition, vacuum RT spacetime becomes Type II
or more special as the dimension of the spacetime D → ∞,
like results of any arbitrary dimension D > 4. It should
not be forgotten that, cosmological constant and pure radiation
terms vanish with this limitation. Petrov types and subtypes of
vacuum RT geometry were accurately investigated, and obligatory
conditions were determined for primary and secondary WANDs k
and ℓ in Table 2. In future studies, by solving field equations, the
property of the limitation method can be fully obtained.
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