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Observations show that massive black holes, thought to be at the center of galaxies and galaxy clusters, are dynamical
objects and interact with their environments. Black holes are characterized by their mass and angular momentum,
and they are time-varying objects embedded in the cosmological Friedman-Lemaitre-Robertson-Walker (FLRW)
universe. Finding analytical solutions for the dynamical black holes with all these properties is very important in
theoretical physics. In the present work, we obtain Einstein’s field equations for our predicted dynamical black
hole geometry and obtain analytical solutions using the energy-momentum tensor obeying imperfect fluid dynamics.
Misner-Sharp-Hernandez mass, turnaround radius, and apparent horizon are analyzed and compared with the recent
observations.

1. Introduction

Scientific data show that the observable universe is expanding
at an accelerating rate and is mostly filled with dark energy, dark
matter, and baryonic matter [1, 2]. Dark energy, also known as
vacuum energy, is thought to be responsible for this expansion and
makes up 68% of the universe. The source of this unknown thing is
one of the most important problem in theoretical and observational
cosmology. In addition, when we observe the motions of galaxies,
the rotational velocities away from the rotational axis have been
measured to be higher than expected. This result predicts that
there must be more matter in these galaxies than we observe. This
structure is called dark matter and is estimated to make up 27% of
the universe and has no interaction with electromagnetic fields and
other types of matter. In this case, the amount of observed baryonic
matter that interacts with the electromagnetic field is measured to
be only about 5%.

There are many studies of possible candidates for dark energy
and dark matter in the literature. For example, giant black holes
believed to be existed at the centers of galaxies are predicted to
be a source of dark energy [3]. In addition, some studies suggest
that primordial black holes are candidates for dark matter [4, 5].
From an astrophysical point of view, black holes that are consistent
with observations should be the ones that emit gravitational
waves and interact with binary systems or galaxies in their
nearby environment. For this reason, for example, the simplest
Schwarzschild black hole geometry is an unrealistic and highly
idealized black hole geometry because it is spherically symmetric,
static, and defined in empty space-time [6, 7]. Reissner-Nordstrom
black holes containing electric charge are also assumed in static
and empty space-time geometry [8, 9]. Moreover, it is expected
that charged black holes cannot form because the repulsion of
the electric force would be greater than that of the gravitational
force. For this reason, Reisner-Norstrom black holes are also
considered to be mathematically consistent solutions. Kerr black
holes are axisymmetric rotating black holes and are stationary,

asymptotically flat and obtained for a static empty universe.
Although Kerr black holes are a very important solution, it would
be better to extend this geometry to the dynamical behavior of the
universe [10].

In general relativity, it is very difficult to obtain analytical
solutions of dynamical black holes. In particular, there are not
many black hole solutions embedded in the FRLW spacetime
geometry. The most important of these solutions is McVittie’s
metric [11], which has attracted much attention. For a recent
discussions see reference [12]. These studies, which examine the
effect of the cosmological universe on such localized systems,
are important for understanding the evolution of black holes
over time [13]. The non-rotating Thakurta solution [14] and
the Sultana-Dyer black hole are other important studies [15–17].
However, the fact that the Sultana-Dyer solution includes negative
energy solutions reduces its physical significance [18]. Dynamical
black hole solutions and thermodynamic properties have been
studied with alternative gravitational theories, and analytical
solutions have been obtained [19, 20]. An eternal rotating black
hole embedded in de Sitter spacetime and referred as Kerr-de-Sitter
geometry presented in the works of [21, 22] are other important
studies in the literature.

On scales larger than 250 million light-years, cosmological
spacetime is found to be homogeneous and isotropic from
observations of the cosmic background radiation [23]. For
this reason, the universe is assumed to be filled with
matter and energy expressed by the perfect fluid stress-energy
tensor. However, recent redshift measurements show that the
universe is not completely homogeneous and isotropic [24, 25].
The homogeneous and isotropic structure breaks down when
examining galaxies and clusters smaller than the cosmological
scale. Thus, it is more accurate to think of the structure of
the universe as inhomogeneous. The definition of an imperfect
energy-momentum tensor, which includes such dense objects, is
also advantageous for obtaining analytical solutions of nonlinear
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field equations. Although stress energy tensor for the imperfect
fluid were not widely accepted in the past, there are many valuable
works in the literature [26–28]. A spherically symmetric geometry
can be defined as the geometry of a body that is a source of
gravitational attraction. The energy of these objects can be
calculated at a distance using the mass energy balance. Their
mass, defined as the Misner-Sharp-Hernandez (MSH) mass, can
be associated with the strong gravitational forces of black holes
[29]. This mass-energy balance is the fundamental basis of general
relativity.

The radius at which the radial acceleration of particles far from
the center of spherically symmetric gravitational massive objects
in the FLRW universe becomes zero is known as the turnaround
radius and is denoted by Rtr . At the limit of turnaround radius, the
gravitational effect of the large spherical body and the dark energy
repulsion of the cosmological background are balanced, and just
outside the Rtr , the radial acceleration of the particles becomes
zero. Thus, these particles escape from the the repulsion of
gravity and move forever in the expanding universe. In this region,
space and matter follow the Hubble flow of the cosmological
expanding universe. Similarly, inside the Rtr , particles fall into the
gravitational object. This radius is not considered an event horizon
because particles can pass this radius if they are fast enough [30].

In the de Sitter cosmological universe, the turnaround radius
of an object with mass M is Rtr =

(
3GM/Λc2

)1/3 and the
matter density inside the turnaround radius is ρ = M/Vtr where
Vtr = 4/3πR3

tr volume inside the turnaround radius. This value
is the lowest limit where there is no gravitational collapse of
the structures. Structures with greater than this density within
this radius experience gravitational collapse. For example, in
the ΛCDM model, the turnaround radius Rtr and the size of the
galaxies were obtained as compatible values [31, 32].

The content of this paper is as follows. In the next section we
introduce the metric ansatz for the cosmological black hole and
obtain the analytic solution of the field equations satisfying the
energy-momentum tensor for the imperfect fluid for spherically
symmetric space time. In the following section we present the
metric in the different coordinates. In section 4, we calculate the
turnaround radius, the apparent horizon and the MSH mass of the
predicted spacetime, and we analyse the results and compare them
with the literature. The paper ends with a conclusion in section 5.

2. The metric ansatz and field equations

Dynamical black hole solutions are important in terms of
providing theoretical information about whether cosmic expansion
will affect local systems or not. The black hole model embedded in
FLRW cosmological spacetime and evolving in time can be simply
described as follows,

ds2 = −f(t, r)dt2 + a(t)2
[

1

f(t, r)
dr2 + r2dΩ2

2

]
, (1)

where the function, f(t, r) =
(
1− 2M(t)

r

)
. In this model, the

Schwarzschild mass changes with time, and at sufficiently large
radial distances we asymptotically obtain the FLRW cosmological
flat-space geometry. Here a(t) is the scale factor and gives
information about the amount of expansion of spacetime. In this
geometry, the Schwarzschild metric is obtained when a(t) and
M(t) are constant, and the homogeneous and isotropic FLRW
cosmological spacetime is obtained only when M(t) = 0 and also
we get the Thakurta space-time for the constant M(t) = M0.
Since this geometry has no symmetry in the radial direction, it
is not fulfilled by the energy-momentum tensor of a perfect fluid.

The imperfect energy-momentum tensor can therefore be defined
as follows [27, 28],

T ab = (ρ+ Pt)u
aub + Ptg

ab + (Pr − Pt) q
aqb, (2)

where Pr and Pt correspond to the radial and tangential pressures
respectively. The anisotropy in fluid pressure of the source results
from the tangential and the radial pressure difference Pr −Pt [27,
28, 33]. ua is the four-velocity vector satisfy the uaua = −1
and qa is the space like vector in radial direction and satisfied
the qaqa = 1 (where ua =

{
(−
∣∣gtt∣∣)1/2, 0, 0, 0} and qa ={

0, (grr)1/2, 0, 0
}

). In the homogeneous and isotropic model
of the universe, there is no qa vector, so the radial and angular
discrepancy vanishes, and then the stress energy tensor is reduced
to the structure that supports the matter as a perfect fluid.

The components of (2) become diagonal according to the
geometry (1) and is given by,

T 0
0 = −ρ, T 1

1 = Pr, T 2
2 = T 3

3 = Pt. (3)

Using Einstein field equations Ga
b = 8πT a

b, the nonzero
components satisfy the following equations,

G0
0 = −8πρ = − 3ȧ2

a2f
− 2Ṁȧ

arf2
,

G1
1 = 8πPr = − ȧ2

a2f
− 2ä

af
− 2Ṁȧ

arf2
,

G2
2 = G3

3 = 8πPt = − ȧ2

a2f
− 2ä

af
− M̈

rf2

−5Ṁȧ

arf2
− 4Ṁ2

r2f3
,

G0
1 = −

2
(
Mȧ+ Ṁa

)
ar2f2

= 0. (4)

All non-diagonal components of the stress-energy tensor T a
b

vanish, in particular, the component T 0
1 = 0 implies that there

is no radial mass flow and no accretion of cosmic fluid which can
be fulfilled by the equation (4) to be zero,

ȧ

a
+

Ṁ

M
= 0 (5)

which yields,

M(t) =
M0

a(t)
, (6)

where M0 is a positive definite constant. Solving Einstein field
equations, the energy density becomes

ρ =
1

8πf

(
3H2 − 2M0H

2

arf

)
, (7)

the pressure in radial direction is

Pr = − 1

8πf

(
3H2 + 2Ḣ − 2M0H

2

arf

)
, (8)

and tangential pressure becomes

Pt = − 1

8πf2

[
3H2 + 2Ḣ − M0

ar

(
10H2 + 5Ḣ − 4M0H

2

arf

)]
.

(9)

The Ricci scalar is obtained as,

R =
2

f2

[
3Ḣ + 6H2 − M0

ar

(
7Ḣ + 18H2 − 4M0H

2

arf

)]
.
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(10)

The event horizon is a null hypersurface and defines the boundary
of the black hole region of spacetime. From the Ricci scalar we
obtain the event horizon from the singular points f = 0. The
equation f = 0 yields r = 2M0

a
, where a(t) varies with time and

hence event horizon r(t) varies with time. In this sense we cannot
localise the event horizon in dynamical geometries and it is more
appropriate to find the apparent horizon. The apparent horizon is
presented in section 4.

The scale factor a(t) remains a free parameter. If we prefer
to stay in the de Sitter cosmological universe, the scale factor
a(t) = a0 e

λt satisfies all the field equations, which means that
the universe expands exponentially.

3. Pseudo-Painleve-Gullstrand form
Studying in the Painleve coordinates become more useful

especially when we work on the horizon of black holes. We
define the areal radius as R(t, r) = a(t)r in order to write
equation (1) in Painleve-Gulstrand (PG) form, which we wrote in
comoving coordinates in FLRW-Schwarzschild-like geometry [34]
The differential of r becomes,

dr =
1

a
(dR−HRdt) , (11)

where H(t) = ȧ
a

is the Hubble parameter and overdot defines the
derivative with respect to comoving time t. The PG form of line
element becomes

ds2 = −

(
1− 2M0

R
− H2R2

1− 2M0
R

)
dt2 +

dR2

1− 2M0
R

− 2HR

1− 2M0
R

dtdR+R2dΩ2
2. (12)

Since this line element does not define the flat space for a constant
time, the metric in (12) cannot be addressed as the PG coordinates
but we can say it is the ”pseudo-PG” type. To eliminate the cross
term we introduce the time coordinate T as,

dT =
1

F (t, R)
(dt+ β(t, R)dR) . (13)

For

β(t, R) =
HR

(1− 2M0
R

)2 −H2R2
, (14)

we get a metric similar to Schwarzshild-de Sitter-Kottler (S-dS-K)
geometry as

ds2 = −

(
1− 2M0

R
− H2R2

1− 2M0
R

)
dT 2

+
dR2(

1− 2M0
R

− H2R2

1− 2M0
R

) +R2dΩ2
2. (15)

Here, it should be noted that, the McVittie metric in S-dS-K
coordinates is expressed as follows,

ds2 = −
(
1− 2M0

R
−H2R2

)
dT 2 +

dR2(
1− 2M0

R
−H2R2

)
+R2dΩ2

2. (16)

If we compare our result with the McVittie metric, we have more
general solution in (15), than the metric (16) [34].
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Fig. 1. Radial trajectories of massive test particles in equation
(17) subject to zero initial velocity. The dashed black line is the
location of the turnaround radius (Rtr). We used the values for the
parameters M = 1 and H = 0.1.

Also in the [35], a metric similar to (15) (but not the same) was
determined for the phantom matter, and the scale factor allows Big
Rip solutions. In this sense, our work is a more general solution
that leaves the scale factor as a free parameter and includes the
expanding universe model.

4. Turnaround radius for dynamical black holes
The turnaround radius is obtained when the equations

d2R/dτ2 = 0 or F = −dVeff/dτ = 0 are satisfied. Here τ is the
absolute time and R is the areal radius. Also in [36], the turnaround
radius is obtained by equating the ”local” part M0 and the
”cosmological” part H2R3/2 of the Hawking-Hayward/Misner
Sharp-Hernandez mass to each other.

We can perform the radial geodesic equation for (12) and
obtain the acceleration for a particle as,

R̈(τ) =

(
R− 3M0

(R− 2M0)2
R4 − M0

H2

)
H2

R2
+RḢṫ2(τ), (17)

where an overdot denotes differentiation with respect to the proper
time τ .

The position of the turnaround radius corresponds to R̈ = 0
and therefore the acceleration of a unit mass vanishes. At this
radius of the shell, the gravitational attraction of the central mass is
balanced by the effect of the cosmological constant. For the scale
factor a(t) = exp(Ht), the ṫ2(τ) term disappears for constant H
and the radius of turnaround radius is obtained as follows,

R1 = −2.66459− 4.03589i , R2 = −2.66459 + 4.03589i,

R3 = 1.90397− 0.396958i , R4 = 1.90397 + 0.396958i,

R5 = 4.52124. (18)

where we have used the values for the parameters M0 = 1 and
H = 0.1 as in [36] for a simple comparison. Here only one of the
roots of R has the real value and R5 is denoted as the turnaround
radius (Rtr), dashed black line in the figure:1). Here a test particle
accelerates for R > Rtr and moves away from the spherical mass
M0 (upper part of the figure: 1), and for R < Rtr it will fall on
the mass M0 (lower part of the figure: 1), the radius R = Rtr

becomes an unstable equilibrium position.

Here, note that, for McVittie metric, the radial geodesic
equation is presented as [36],

R̈ =

(
R3 − M0

H2

)
H2

R2
+RḢ

√
1− 2M0

r
ṫ2. (19)
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In this case, for example for the scale factor a(t) = a0e
Ht (where

H is constant), the second term vanishes and the turnaround radius
becomes Rc = (M0

H2 )
1/3. This result is exactly the same as the

Schwarzschild-de Sitter-Kottler spacetime, which is described as
the spherically symmetric distribution of matter with mass M0 in
a spatially flat de Sitter background with a cosmological constant
Λ > 0 (where the Hubble parameter is H =

√
Λ/3), [31].

In our work, from the equation (17), in the case of a constant
H , we obtain the following equation for the turnaround radius,

R− 3M0

(R− 2M0)2
R4 = R3

c . (20)

This equation is different from the McVittie case but becomes
exactly the same for a sufficiently large radius R. In physical units,
the equation (20) is represented as follows

R− 3GNM0

c2

(R− 2GNM0

c2
)2
R4 = R3

c . (21)

Where GN = 6.674 × 10−11Nm2/kg2 is the Newton’s
gravitational constant, H = 67.3 ± 1.1(km/s)/Mpc =
2.18 × 10−18s−1 is the Hubble constant, Rc = 11.2 ±
0.1Mpc

(
M0

1015M⊙

)1/3
is turnaround radius for the geometry

S-deS-K space time and c = 2.998 × 108m/s is the speed
of light. For example for the Milky way mass approximately
M0 = MMW = 1.29 × 1012M⊙ [37, 38], substituting these
values in to the (21) we get,

R1 = −5.96742× 1021 − 1.03359× 1022i

R2 = −5.96742× 1021 + 1.03359× 1022i,

R3 = 3.9× 1015 − 508489.i,

R4 = 3.9× 1015 + 508489.i,

R5 = 1.19348× 1022. (22)

Except for R5, all the roots are imaginary and have no physical
meaning. The root of R5 = 1.19 × 1022m = 1.19Mpc is
our calculated value of the turnaround radius of the Milky Way.
According to the latest observations, the estimated turnaround
radius of the Milky Way is between the values Rtr = 0.718 −
0.960Mpc [39]. Our result is in agreement in degrees, but are
slightly larger than the estimated value.

For dynamical black holes, the apparent horizon is a more
useful concept and provides us a more stable calculation. On the
other hand, the event horizon is not local in time and is not a
practical way of looking at evolving black holes. The areal radius
in (1) changes in time and is read as R = a(t)r and the apparent
horizon is obtained from the relation ∇cR∇cR = 0 and satisfies,

1− 2M0

R
− H2R2

1− 2M0
R

= 0. (23)

If we make some simple mathematical work, we get the expression
of the fourth order equation as H2R4 −R2 +4M0R− 4M2

0 = 0.
This equation has four roots,

R1 =
1−

√
1− 8HM0

2H
, R2 =

1 +
√
1− 8HM0

2H
,

R3 = −1 +
√
1 + 8HM0

2H
, R4 = −1−

√
1 + 8HM0

2H
,(24)

where R3 is always negative and not physically accepted value.
In our result R2 reduces to areal radius for FLRW universe for
M0 = 0 in which RH = 1

H
and R1 and R4 disappears at this

limit. In the static limit H → 0, R4 recovers the Schwarzschild
event horizon, R = 2M0 [40].

The Misner-Sharp-Hernandez mass which can be interpreted
as a measure of mass inside a sphere of areal radius R at given
time is MMHS is defined as

1− 2MMSH

R
= ∇cR∇cR, (25)

and we get

MMSH = M0 +
H2R3

2(1− 2M0
R

)
. (26)

This result has two terms, first one is the mass of local object
M0 and the second term on the right is the contribution of
the cosmological background. Our result in (26) reduces to
the Misner-Sharp mass of the Schwarzschild-de Sitter-Kottler
spacetime and McVittie space for M0 → 0 and of the FLRW
space for M0 = 0. Note that, in (26), we have found a bigger
mass value than the mass obtained in the McVittie space, in which
MMSH = M0 + H2R3

2
[41, 42]. (Here, in (26), for the limit

M0 → 0, the second term in the denominator goes to zero faster
than the first term on the right, and hence equation (26) becomes
the S-deS-K mass). Also we recover the Schwarzschild mass for a
constant scale factor in which H = 0.

5. Conclusion
In this work, we introduced a dynamical black hole embedded

in the cosmological FLRW universe. Considering the cosmic
fluid to be inhomogeneous, we have defined an imperfect fluid
energy-momentum tensor and, using Einstein’s general theory of
relativity, we investigated the some of its properties. By obtaining
the radial geodesic equation, we have found the turnaround
radius, which is the radius of the spherical surface where the
gravitational force acting on the object and the effect of dark
energy are in equilibrium. We also obtained the apparent horizon
and the MSH mass and concluded that our results are consistent
with the literature. The McVittie metric in isotropic coordinates
becomes S-deS-K spacetime when the Hubble parameter is

constant, (where a(t) = eHt = e
√

Λ
3
t) and the turnaround

radius becomes indistinguishable from that obtained in S-deS-K
spacetime. However, in our work, as we expected, the turnaround
radius was found to be slightly different and yields the S-deS-K
result in the appropriate limit. In this respect, we can say that our
predicted black hole metric can be a candidate for the dynamical
black hole geometry and can define spacetime in a more general
and detailed manner.
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