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This paper introduces a new class of operators called LM - operators, extending the concepts of L-weakly and
M -weakly compact operators within the framework of Banach lattices. While L-weakly and M -weakly compact
operators have established properties, LM -compact operators retain some of these characteristics but also diverge
in certain respects. The study explores the relationships between LM -compact operators and some existing classes,
and examines their algebraic properties and duality aspects.

1. Introduction

The classes of operators known as L-weakly and M -weakly
compact were established by P. Meyer-Nieberg [1]. While these
classes are subsets of weakly compact operators, they do not imply
compactness; additionally, compact operators are not necessarily
included in these categories.

While the analysis of weakly compact operators in a general
Banach lattice is complex, the subclasses of L-weakly and
M -weakly compact operators exhibit various order properties.
There is a wealth of literature discussing the relationships between
these subclasses, their connections to weakly compact operators,
and other operator classes. Although a general operator class does
not exist, it has been shown that the classes of regular L-weakly
and regular M -weakly compact operators form a Banach lattice
and possess numerous ordered properties (see [2]).

Recently, new operator classes related to L-weakly and
M -weakly compact operators have been introduced, along
with their associated properties. These include almost L-
and M -weakly compact operators [3], pL- and pM -weakly
compact operators [4], LW -compact operators [5], L-weakly
and M -weakly demicompact operators [6], null almost L- and
M -weakly compact operators [7], un L-weakly and un M -weakly
compact operators [8], Generalizations of L- and M-weakly
compact operators [9], limitedly L-weakly compact operators [10],
statistical order compact operators [11]. These classes represent
generalizations of L-weakly and M -weakly compact operators.

In this study, we propose a novel class of operators referred
to as LM-operators, which are defined in relation to L-weakly
and M -weakly compact operators. Our findings indicate that
this new class retains some of the ordered properties of the
original classes while lacking others. Additionally, we explore
comparisons with compact and weakly compact operator classes,
as well as investigate some of their algebraic properties and aspects
of duality.

2. Materials and Methods
We use [12] and [13] as our primary sources concerning

Banach lattices and operators on them. However, for the
convenience of the reader, let us recall some definitions that this
work involves.

In the remainder of this manuscript, we will consider E as a
Banach lattice with norm dual E′, BE denoting the closed unit ball
of E, and sol(A) representing the solid hull of the set A.

We refer to an operator as a linear and norm-bounded
transformation. An operator T that maps from the Banach lattice
E to the Banach lattice F is called positive if it satisfies T (E+) ⊆
F+. The set of all positive operators within the subclass P is
denoted by P+. The notation TS indicates the composition of the
operators T and S, while T k refers to the operator T composed
with itself k times, for k ∈ N+.

Definition 2.1. [13] Let E be a Banach lattice and X be a Banach
space.

i. A non-empty bounded subset A of E is called L-weakly
compact if every disjoint sequence contained in sol(A)
converges to zero in norm.

ii. An operator T from X to E is defined as L-weakly compact
if T (BX) is L-weakly compact set in E.

iii. An operator from E to X is defined as M -weakly compact if
∥Txn∥ → 0 as n → ∞ for every disjoint sequence (xn) in
BE .

A Banach lattice E is said to have an order continuous
norm if the condition xα ↓ 0 in E leads to ∥xα∥ ↓ 0.
For example, all separable σ-Dedekind complete Banach lattices
possess this characteristic. However, notable examples of Banach
lattices that do not have order continuous norms include ℓ∞
and c, the latter being the space of convergent sequences with
the supremum norm. Moreover, the set Ea = {x ∈
E : every monotone sequence in [0, |x|] converges} is the largest
closed order ideal in E for which the induced norm is order
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continuous. For instance, for an atomless measure µ, we find that
(L∞(µ))a = {0} and (ℓ∞)a = c0.

In our findings, we will use specific notations for a Banach
space X and a Banach lattice E: L(X,E) represents the set of
all linear and continuous operators, while SC(X,E), WL(X,E),
and WM(E,X) denote the sets of all semi-compact operators,
L-weakly compact operators, and M -weakly compact operators
in L(X,E), respectively. Moreover, if X = E, we will use the
shorthand notations L(E), SC(E), WL(E), and WM(E).

As shown in Propositions 2.4.10 and 3.6.2 of [13], Ea is
indeed a closed order ideal that includes all L-weakly compact
subsets. Consequently, Ea = {0} (or (E′)a = {0}) if and only if
WL(E,F ) = {0} (or WM (E,F ) = {0}). Therefore, we assume
that Ea ̸= {0} (or (E′)a ̸= {0}).

3. Results

We have introduced a new operator class that builds upon
the concepts of L-weakly and M -weakly compact operators,
following a similar approach.

Definition 3.1. An operator T : E → E is classified as an
LM -operator if lim ∥Txn∥ = 0 for every disjoint sequence (xn)
that lies within sol(T (BE)). The collection of all LM -operators
is denoted by LM(E).

Remark 3.2. i) Every L-weakly and M -weakly compact
operator qualifies as an LM -operator, which can be expressed
as:

WL(E) ⊆ LM(E) and WM(E) ⊆ LM(E).

Indeed, if T ∈ WL(E) and (xn) is a disjoint sequence in
sol(T (BE)), then ∥xn∥ → 0. The continuity of T implies
that ∥Txn∥ → 0 as well. Similarly, if T ∈ WM(E), then
from the inclusion sol(T (BE)) ⊆ ∥T∥BE , we also have
∥Txn∥ → 0.

ii) However, an LM -operator is not necessarily weakly compact,
meaning it does not have to be L-weakly or M -weakly
compact. For instance, the operator

T : L1[0, 1] → L1[0, 1], T f(x) =

{
0 if x ∈ [0, 1

2
]

f(x− 1
2
) if x ∈ ( 1

2
, 1]

is not weakly compact, yet it is an LM -operator since T 2 =
0.
Conversely, a weakly compact operator is not necessarily
an LM -operator. For example, the identity operator Id :
L2[0, 1] → L2[0, 1] is weakly compact but does not qualify
as an LM -operator since lim ∥rn∥ ≠ 0 for the Rademacher
sequence (rn) in BL2[0,1].

iii) The identity operator Id : L2[0, 1] → L2[0, 1] is neither
weakly compact nor an LM -operator. Thus, in general,
LM(E) is a proper subset of L(E).

iv) If E is an AL-space or an AM -space, then every weakly
compact operator is an LM -operator, i.e., W(E) ⊆
LM(E). This is because any weakly compact operator
defined on an AL-space (or AM -space) is L-weakly compact
(or M -weakly compact) and, consequently, qualifies as an
LM -operator.

v) If the dual space E′ possesses an order continuous norm,
then every Dunford-Pettis operator is M -weakly compact.
Therefore, if E is a Banach lattice with an order continuous
dual norm, every Dunford-Pettis operator will also be an
LM -operator.

Theorem 3.3. LM(E) has the domination property.

Proof. Suppose that S, T ∈ L (E) such that 0 ≤ S ≤ T
and T ∈ LM(E). Then, the inclusion sol (S (BE)) ⊆
sol (T (BE)) holds. Thus, if we choose a disjoint sequence
(xn) ⊂ sol (S (BE)) then ∥Txn∥ −→ 0 holds, so is ∥Sxn∥ −→
0. It means S ∈ LM(E).

Lemma 3.4. For any T ∈ LM(E) and ε > 0, there exists an
element u ∈ E+ such that

∥∥T (|Tx| − u)+
∥∥ < ε for all x ∈ BE .

Proof. Assume that A = sol (T (BE)). By Theorem 13.5 in
[12], for ε > 0, there exists an element u ∈ Id+ (A) such that∥∥T (|z| − u)+

∥∥ < ε for all z ∈ A. Hence
∥∥T (|Tx| − u)+

∥∥ < ε
for all x ∈ BE .

Proposition 3.5. If T ∈ LM+ (E) then T 2 is a semi compact
operator.

Proof. As a consequence of the previous proposition, from the
equality (|Tx| − u)+ = |Tx| − |Tx| ∧ u, we see that

T 2 (BE) ⊆ T [−u, u] + εBE . (1)

Since Tu ≥ 0, it means T 2 ∈ SC (E).

Remark 3.6. Contrary to Proposition 3.5, an operator T ∈ L (E)
such that T 2 ∈ SC (E) does not need to be a LM -operator. For
example, Iℓ∞ identity operator of ℓ∞ is not a LM -operator while
I2ℓ∞ is a semicompact operator.

Theorem 3.7. For any Banach lattice E, the following assertions
are equivalent.

i. T ∈ LM(E).

ii. Every disjoint sequence (xn) in sol (T (BE)) converges
uniformly to zero on T ′ (BE′).

iii. Every disjoint sequence (fn) in sol (T ′ (BE′)) converges
uniformly to zero on T (BE).

iv. T ′ ∈ LM (E′).

Proof. T ∈ LM(E) if and only if for every disjoint
sequence (xn) in sol (T (BE)), ∥Txn∥ → 0, so
sup {|f (Txn)| : f ∈ BE′} = sup {|T ′f (xn)| : f ∈ BE′} →
0, i.e. every disjoint sequence (xn) in sol (T (BE)) converges
uniformly to zero on T ′ (BE′). By the Theorem 18.12 in
[12], this fact is equivalent to that every disjoint sequence (fn)
in sol (T ′ (BE′)) converges uniformly to zero on T (BE).
This means that T ′ ∈ LM (E′) from the definition of
LM -operator.

Theorem 3.8. For any Banach lattice E, the following assertions
are equivalent.

i. T ∈ LM(E).

ii. fn (Txn) → 0 for every sequence (xn) in BE and for every
disjoint sequence (fn) in sol (T ′ (BE′)).

Proof. (i ⇒ ii) This is clear from previous theorem (1 ⇒ 3) and
the inequality

|fn (Txn)| ≤ sup {|fn (Tx)| : x ∈ BE} (2)

for every sequence (xn) in BE .

(ii ⇒ i) Suppose that sup {|fn (Tx)| : x ∈ BE}
does not converges to zero. Then, there exists some
real ε > 0 and a subsequence (fnk ) ⊂ (fn) such that
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sup {|fnk (Tx)| : f ∈ E′} > ε. Hence we can find a sequence
(xnk ) in BE that satisfies |fnk (Txnk )| > ε, which contradicts to
our assumption.

Let W be a linear subset of the space L (E). If for every T ∈
W and for every S ∈ L (E) the compositions ST and TS belong
to W then W is called left ideal and right ideal, respectively,
in L (E). For example, weakly compact operators, compact
operators, Dunford-Pettis operators are left and right ideals in
L (E) while semicompact regular operators, AM -compact regular
operators are two sided ideals in the space of regular operators
Lr (E). However, L-weakly and M -weakly compact operators
need not be two sided ideals in L (E) (see [14]). So, what can be
said for regular operators?

In order to provide at least a partial answer to this question, let
us first present proof of a well-known simple result below.

Lemma 3.9. Let E be a Banach lattice, T, S ∈ L (E) and (xn)
be a sequence. If the inclusion (xn) ⊂ sol (TS (BE)) holds, then
(xn) ⊂ sol (T (BE)).

Proof. For every n ∈ N, to being xn in sol (TS (BE)) implies
that there exist αn ∈ R

+ and yn ∈ BE such that |xn| ≤
αn |TS (yn)|. On the other hand since S is a bounded operator
there exists zn ∈ BE satisfying yn = ∥S∥ zn for every n ∈ N.
Then,

|xn| ≤ αn |TS (yn)| = αn |T (∥S∥ zn)| = αn ∥S∥ |T (zn)| (3)

holds which means (xn) ⊂ sol (T (BE)).

The following result state that LM(E) is a algebraic left ideal
in L (E).

Proposition 3.10. If T ∈ LM(E) and S ∈ L (E) then TS ∈
LM(E).

Proof. Let us choose a disjoint sequence (xn) in sol (TS (BE)).
According to previous Lemma, (xn) ⊂ sol (T (BE)) holds. Since
T ∈ LM (E), ∥T (xn)∥ → 0, and, by the following inequality

∥TS (xn)∥ ≤ ∥S∥ ∥Txn∥ (4)

taking limit n → ∞ we see ∥TS (xn)∥ → 0.

Question 3.11. Is there any S ∈ L (E) such that ST /∈ LM (E)
where T ∈ LM(E)?

By Proposition 3.10, if T ∈ LM(E) and the bounded
operator S commutes with T then ST ∈ LM(E) holds. The
commutant of an operator T ∈ L (X) is defined by the set
{T}′ = {S ∈ L (X) : ST = TS}. Hence, if S ∈ {T}′ then
ST ∈ LM(E).

Similarly, the super right commutant and super left commutant
of an operator S ∈ L+ (F ) are

[T ⟩ =
{
S ∈ L+ (F ) : TS ≤ ST

}
and

⟨T ] =
{
S ∈ L+ (F ) : TS ≥ ST

}
respectively. Clearly [T ⟩ ∩ ⟨T ] = {T}′+ holds.

Corollary 3.12. If T ∈ LM(E) and S ∈ ⟨T ] then ST ∈
LM(E).

Proof. From the Proposition 3.10, ST ∈ LM(E), so TS ∈
LM(E) since the domination property of LM(E).

As a consequence of the Proposition 3.10, the following two
results are easily seen.

Corollary 3.13. For any Banach lattice E, the following
assertions hold:

i) If T ∈ WL (E) and S ∈ L (E) then TS ∈ LM(E).

ii) If T ∈ WM (E) and S ∈ L (E) then ST ∈ LM(E).

4. Conclusion
In this study, we have defined a new class of operators

known as LM -operators, based on L-weakly and M -weakly
compact operators. LM -operators serve as a generalization of
both L-weakly and M -weakly compact operators while retaining
some properties of these classes.

Furthermore, we have demonstrated that this new class
preserves certain ordering properties, yet exhibits different
characteristics in some aspects. In the literature, there are
numerous studies on the properties of L-weakly and M -weakly
compact operators, as well as their relationships with other
operator classes. Our work contributes to the classification of
operators by adding to the broad spectrum of operator classes
presented in previous studies.

For future research, exploring LM -operators within the
framework of specific properties of Banach lattices, as well
as conducting a more in-depth examination of the relationships
between this class and other operator classes, may offer new
perspectives.
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[10] Ş. Alpay, Y. E. Emelyanov, and S. Gorokhova.
“Limitedly L-weakly compact operators”.
arXiv:2306.16338v1 119 (2023).

[11] A. Aydın. “Statistically order compact operators on
Riesz spaces”. Hacettepe Journal of Mathematics
and Statistics 53 (2024), pp. 628–636.

[12] C. D. Aliprantis and O. Burkinshaw. “Positive
Operators”. Academic Press, New York and London
119 (1985).

[13] P. Meyer-Nieberg. “Banach Lattices”. Springer
Berlin, Heidelberg (1991).

[14] E. Bayram and W. Wnuk. “Some Algebra Ideals Of
Regular Operators”. Commentationes Mathematicae
53 (2013), pp. 127–133.

License: This article is available under a
Creative Commons License (Attribution
4.0 International, as described at
https://creativecommons.org/licenses/by-
nc/4.0/)

42

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Materials and Methods
	Results
	Conclusion

