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A Method of Fundamental Function for Fractional Linear Local Problems
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The literature of fundamental solutions is based on some fundamental functions such as Cauchy functions, Green
functions, etc. Such functions and the approaches for their construction are valuable. The study aims to contribute
the literature by introducing a method of such fundamental function for construction. Therefore, a linear ordinary
differential equation with Caputo fractional derivative involving a coefficient in weighted Lebesgue space and locally
a linear initial value condition is considered and studied by essentially using the concept of a special adjoint system
of integral form. The solution of the adjoint system is the fundamental functional which enables the identification of
the fundamental function for the problem.

1. Introduction

Linear differential problems with fractional derivative can
be regarded as the generalizations of classical linear differential
problems. Recently, such general problems are frequently studied
in mathematics, physics, engineering, mechanics and many other
disciplines [1–11]. The literature has plenty of papers related to
the investigations and approaches on the fundamental solutions of
such problems even if not as much as the classical ones. One
of these approaches has been applied for the classical problems
[12–17]. To the best of our knowledge, it has still not been applied
for the fractional ones to determine the fractional Cauchy function
or fractional Green function, which is the particular kind of the
fundamental function corresponding to the problem. The aim at
this dealing is to extend the approach to the fractional ones and
hereby to contribute to the enrichment of literature.

This study aims to contribute to the growing literature on
fractional differential equations by proposing a novel method
for constructing fundamental functions specifically tailored to
fractional linear local problems. The approach is grounded
in the use of a special adjoint system and focuses on an
equation with a Caputo fractional derivative and a coefficient
belonging to a weighted Lebesgue space, subject to a linear initial
condition. Through this framework, the concept of a fundamental
functional is introduced, whose first component corresponds to
the fundamental function of the problem. The proposed method
distinguishes itself from existing techniques by leveraging the
structural properties of solution spaces rather than relying on
classical integration by parts.

Therefore, the rest of the study is organized as follows. In
Section 2, some preliminaries are presented. In Section 3, the
problem is stated in detail. In Section 4, the discussion on its
solution is given. In Section 5, the illustration is carried out. In
the final section, some results are emphasized.

2. Preliminaries

Let R be the set of real numbers. Let G = (0, X) be a bounded
open interval in R. We say that v : G → R is a weight function
if it is Lebesgue measurable, a.e. a positive and locally integrable
function on G. Let Lp,v(G) with 1 ≤ p < ∞ be the space of
Lebesgue measurable functions u on G such that

∥u∥Lp,v(G) = ∥u∥p,v = (

∫ X

0

|u(x)|pv(x)dx)
1
p < ∞.

Let L∞,v(G) be the space of Lebesgue measurable and essentially
bounded functions u on G such that

∥u∥L∞,v(G) = ∥u∥∞ = ess sup
0<x<X

|u(x)|.

Theorem 2.1. For 1 ≤ p < ∞ the space Lp,v(G) and the space
L∞,v(G) are Banach spaces [18, 19].

Theorem 2.2. If 1 ≤ p < ∞ and 1
p
+ 1

q
= 1, then for every

linear bounded functional ℓ on the space Lp,v(G) there is a unique
g ∈ Lq,v(G) such that

ℓ(f) =

∫ X

0

f(ξ)g(ξ)v(ξ)dξ for all f ∈ Lp,v(G).

Additionally ∥ℓ∥Lq,v(G) = ∥g∥Lq,v(G) [18, 19].

Let N denote the set of all natural numbers, n ∈ N and
let AC(G) and ACn(G) respectively denote the space of all
absolutely continuous functions on G and the space of all real
valued functions u which have continuous derivatives up to order
n−1 on G such that u(n−1) ∈ AC(G). It is clear that AC1(G) =
AC(G)[3].

Furthermore, let us state several reminds the readers of the
fractional derivative and integral [1–3, 5]:
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Definition 2.3. Let u ∈ L1(G). For almost all x ∈ G and a
positive α, the left and right Riemann-Liouville fractional integrals
of order α are defined by

Iα0+u(x) ≡
1

Γ(α)

∫ x

0

(x− ξ)α−1u(ξ)dξ,

and

Iα0−u(x) ≡
1

Γ(α)

∫ X

x

(ξ − x)α−1u(ξ)dξ,

respectively, where Γ is the gamma function.

Definition 2.4. Let u ∈ ACn(G). For almost all x ∈ G
and a positive α, the left and right Riemann-Liouville fractional
derivatives of order α are defined by

RLDα
0+u(x) ≡ dn

dxn
(In−α

0+ u(x))

=
1

Γ(n− α)
(
d

dx
)n

∫ x

0

(x− ξ)n−α−1u(ξ)dξ,

and

RLDα
0−u(x) ≡ dn

dxn
(In−α

0− u(x))

=
1

Γ(n− α)
(− d

dx
)n

∫ X

x

(ξ − x)n−α−1u(ξ)dξ,

respectively, where n ∈ N and n− 1 < α ≤ n.

Definition 2.5. Let u ∈ ACn(G). For almost all x ∈ G and a
positive α, the left and right Caputo fractional derivatives of order
α are defined by

CDα
0+u(x) ≡ In−α

0+

dn

dxn
u(x)

=
1

Γ(n− α)

∫ x

0

(x− ξ)n−α−1u(n)(ξ)dξ,

and

CDα
0−u(x) ≡ In−α

0− (− d

dx
)nu(x)

=
(−1)n

Γ(n− α)

∫ X

x

(ξ − x)n−α−1u(n)(ξ)dξ,

respectively, where n ∈ N and n− 1 < α ≤ n.

Remark 2.6. For α ∈ N the Riemann-Liouville and Caputo
fractional derivatives of order α are the classical derivatives dn

dxn .

Theorem 2.7. If α > 0, u ∈ C(n)(G) and n = [|α|] + 1, then

CDα
0+ Iα0+u(x) = u(x), CDα

0− Iα0−u(x) = u(x),

and

Iα0+
CDα

0+ u(x) = u(x)− u(0), Iα0−
CDα

0− u(x) = u(X)− u(x),

u′(0) = ... = u(n−1)(0) = u′(X) = ... = u(n−1)(X) = 0.

Definition 2.8. Let 1 ≤ p < ∞ and n = [|α|] + 1. The space
W

(α)
p,v (G) is defined by

W (α)
p,v (G) = {u|u ∈ Lp,v(G) ∩ACn(G), CDα

0+u ∈ Lp,v(G)}

and a norm on the space is defined by

∥u∥
W

(α)
p,v (G)

= ∥u∥p,v + ∥CDα
0+u∥p,v < ∞.

Lemma 2.9. If 1 ≤ p < ∞, then the space W (α)
p,v (G) is a Banach

space.

3. Statement of The Problem

We consider the equation

(Vαu)(x) ≡ CDα
0+u(x) +A0(x)u(x) = zα(x), x ∈ G, (3.1)

subject to classical local condition

V0u ≡ u(0) = z0, (3.2)

where 0 < α < 1, A0, zα ∈ Lp,v(G), z0 ∈ R for 1
p
+ 1

q
= 1.

We investigate an integral representation of the solution to
problem (3.1)-(3.2) in the space W

(α)
p,v (G). Problem (3.1)-(3.2) is

a linear problem which can be considered as an operator equation:

V u = z, (3.3)

with the linear operator V = (Vα, V0) and z = (zα(x), z0). By
the assumptions mentioned above we know that the operator V =

(Vα, V0) : W
(α)
p,v (G) → Lp,v(G)× R is bounded from W

(α)
p,v (G)

into the Banach space Ep,v ≡ Lp,v(G) × R of the elements z =
(zα(x), z0) with

∥z∥Ep,v = ∥zα∥Lp,v(G) + |z0|, 1 ≤ p < ∞.

If, for a given z ∈ Ep,v , problem (3.1)-(3.2) has a unique solution
u ∈ W

(α)
p,v (G) such that ∥u∥

W
(α)
p,v (G)

≤ c0∥z∥Ep,v , then this
problem is called a well-posed problem, where c0 is a constant
independent. Problem (3.1)-(3.2) is well-posed if and only if
V : W

(α)
p,v (G) → Ep,v is a (linear) homeomorphism.

4. Discussion

Problem (3.1)-(3.2) is analyzed by inspired by a novel concept
of the adjoint problem [12–17]. This concept is introduced by the
adjoint operator V ∗ of V . Any function u ∈ W

(α)
p,v (G) can be

represented by [5]

u(x) = u(0) +
1

Γ(α)

∫ x

0

(x− ξ)α−1 CDα
0+u(ξ)dξ. (4.1)

Then, we state that the operator V has an adjoint operator V ∗ =
(wα, w0) : Eq,v → Eq,v where Eq,v ≡ Lq,v(G) × R. By using
the general form of a continuous linear functional on Eq,v [5, 18,
19], we have

f(V u) ≡
∫ X

0

fα(x)(Vαu)(x)v(x)dx+ f0(V0u)

=

∫ X

0

fα(x)v(x) [
CDα

0+u(x) +A0(x)u(x)]dx

+ f0u(0).

By according to the representation (4.1), we obtain

f(V u) ≡
∫ X

0

fα(x)v(x)[
CDα

0+u(x)

+A0(x)(u(0) +
1

Γ(α)

∫ x

0

(x− ξ)α−1 CDα
0+ u(ξ)dξ)]dx

+f0u(0)

=

∫ X

0

(wαf)(ξ)
CDα

0+u(ξ)v(ξ)dξ + (w0f)u(0)

≡ (V ∗f)(u),∀f = (fα(x), f0) ∈ Eq,v, ∀u ∈ W (α)
p,v (G),

(4.2)
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where f = (fα(x), f0) ∈ Eq,v is considered as a linear bounded
functional on Ep,v , 1

p
+ 1

q
= 1 and

(wαf)(ξ) = fα(ξ) +
1

Γ(α)

∫ X

ξ

(s− ξ)α−1A0(s)fα(s)ds

= fα(ξ) + Iα0−(A0fα)(ξ),

w0f =

∫ X

0

fα(x)A0(x)v(x)dx+ f0.

The operator w = (wα, w0) : Eq,v → Eq,v represented by
wf = (wαf, w0f) is linear and bounded by Minkowski and
Hölder inequalities. The operator w is an adjoint operator for the
operator V , in other words, V ∗ = w.

Now, Fredholm’s alternative theorem can be stated in the
context of solvability of the problem as follows:

Theorem 4.1. If 1 < p < ∞, then V u = 0 has either only the
trivial solution or a finite number of linearly independent solutions
in W

(α)
p,v (G):

(1) If V u = 0 has only the trivial solution in W
(α)
p,v (G), then also

wf = 0 has only the trivial solution in Eq,v . Then, the operators
V : W

(α)
p,v (G) → Ep,v and w : Eq,v → Eq,v become linear

homeomorphisms.
(2) If V u = 0 has m linearly independent solutions u1, u2, ..., um

in W
(α)
p,v (G), then wf = 0 has also m linearly independent

solutions

f⋆1⋆ = (f⋆1⋆
α (x), f⋆1⋆

0 ), ..., f⋆m⋆ = (f⋆m⋆
α (x), f⋆m⋆

0 )

in Eq,v . In this case, V u = z and wf = φ have solutions u ∈
W

(α)
p,v (G) and f ∈ Eq,v for given z ∈ Ep,v and φ ∈ Eq,v if and

only if the conditions

∫ X

0

f⋆i⋆
α (ξ)zα(ξ)v(ξ)dξ + f⋆i⋆

0 z0 = 0, i = 1, ...,m (4.3)

and∫ X

0

φα(ξ)
CDα

0+ui(ξ)v(ξ)dξ + φ0ui(0) = 0, i = 1, ...,m (4.4)

are satisfied, respectively.

Let us consider the following equation given in the form of a
functional identity

(wf)(u) = u(x), ∀u ∈ W (α)
p,v (G), (4.5)

where f = (fα(ξ), f0) ∈ Eq,v is an unknown pair and x is a
parameter in the closure G of G.

Definition 4.2. Let f(x) = (fα(ξ, x), f0(x)) ∈ Eq,v be a pair
with parameter x ∈ G. If f = f(x) is a solution of (4.5) for
a given x ∈ G, then f(x) is called a fundamental functional of
V (or of (3.3)). The first component fα(ξ, x) of the fundamental
functional f(x) corresponds to the fundamental function of V (or
of (3.3)).

We can rewrite (4.5) as

∫ X

0

(wαf)(ξ)
CDα

0+u(ξ)v(ξ)dξ + (w0f)u(0)

=
1

Γ(α)

∫ x

0

(x− ξ)α−1 CDα
0+ u(ξ)dξ + u(0),

∀f ∈ Eq,v,∀u ∈ W (α)
p,v (G). (4.6)

Hence, we can obtain the following special adjoint system

(wαf)(ξ) =
(x− ξ)α−1H(x− ξ)

Γ(α)v(ξ)
, ξ ∈ G,

(w0f) = 1, (4.7)

where H(x − ξ) is Heaviside function on R. (4.5) is equivalent
to the system (4.7). Therefore, f(x) is a fundamental functional if
and only if f(x) is a solution of the system (4.7) for an arbitrary
x ∈ G. For a solution u ∈ W

(α)
p,v (G) of (3.3) and a fundamental

functional f(x), we can rewrite (4.2) as

∫X

0
fα(ξ, x)zα(ξ)v(ξ)dξ + f0(x)z0

=
∫X

0
[ (x−ξ)α−1H(x−ξ)

Γ(α)v(ξ)
]CDα

0+u(ξ)v(ξ)dξ + u(0). (4.8)

Since the right hand side of (4.8) is u(x), the following theorem is
stated:

Theorem 4.3. If (3.3) has at least one fundamental functional
f(x), then any solution u ∈ W

(α)
p,v (G) of (3.3) can be represented

by

u(x) =

∫ X

0

fα(ξ, x)zα(ξ)v(ξ)dξ + f0(x)z0 (4.9)

and also, V u = 0 has only the trivial solution.

Theorem 4.4. If there exists a fundamental functional, then it is
unique. Also, a fundamental functional exists if and only if V u = 0
has only the trivial solution.

If V u = 0 has a nontrivial solution, then a fundamental
functional corresponding to V u = z does not exist. Then,
V u = z usually has no solution unless z has a special structure.
So, a representation of the existing solution of V u = z can be
investigated in a generalized sense [12–17].

5. Example

Now, we present an example by considering α = 1
2
, X =

1, v(x) = 1, A0(x) = zα(x) = 0 ∈ Lp,v(G), z0 ∈ R. The
corresponding special adjoint system (4.7) can be constructed in
the following form

fα(ξ) =
(x− ξ)α−1H(x− ξ)

Γ(α)
, f0 = 1,

where ξ ∈ G. As can be seen, fα(ξ) and f0 have been directly
obtained easily and quickly. Thus, the associated fundamental
functional f(x) = (fα(ξ, x), f0(x)) has been determined. The
first component fα(ξ, x) = fα(ξ) is the fundamental function and
it can be written as follows

f 1
2
(ξ) =

(x− ξ)−
1
2H(x− ξ)

Γ( 1
2
)

,

where x, ξ ∈ (0, 1).

6. Conclusion
By the discussion, the proposed method of fundamental

function essentially is different from the known methods for
constructing the fundamental function. The structural properties
of the space of solution are considered instead of integration by
parts. We are of the opinion that it is valuable and important,
thanks to its applicability easily to a very wide class of the linear
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ordinary differential equations with Caputo fractional derivative
involving a coefficient in weighted Lebesgue space and locally a
linear initial value condition. If the focal equation consists solely
of the principal part (the leading term) with Caputo fractional
derivative, then the fundamental function is established much more
easily and quickly. The fundamental function corresponding to
the considered problem is the first component of the fundamental
functional corresponding to same problem. The considered
study may be useful for the investigations on the existence and
uniqueness of the solutions to the functional linear and nonlinear
problems related to the focal problem.
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Acknowledgment: The author would like to thank the
contributors in the process of publishing and declares that this
study has received no financial support.

Conflict of Interest: The author declares no conflicts of interest.

Orcid ID:
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